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ABSTRACT 0]

Sunblazer is a small solar probe that will be tracked using signals
received from an onboard transmitter. The measurable quantities are
the azimuth and elevation angles of the probe and range-rate as inferred
from a doppler frequency shift. These are measured in station coordin-
ates at a single receiving station. A filter is developed for recursively
estimating the probe state. The quality of the estimation procedure is
investigated by computing the correlation matrix of estimation errors
at probe conjunction, so that the sensitivity of the estimation uncertain-
ties to uncertainties in range-rate data are determined. It is found that
the estimation uncertainties of 4 of the 6 state components can be re-
duced to 2090 of the value calculated without range-rate data. This re-
quires that the residual frequency uncertainties, which are primarily
a function of the onboard transmitter, be reduced to 1 part per 108, To
achieve this, a secound filter is developed for reducing short term fre-
quency variations to a low level, Methods are also suggested for esti-
mating the longer term transmitter drift.
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SYMBOLS

quantity ( ) is a vector
mean value of quantity in ( )

quantity ( ) has been updated from a prior time with the
state transition matrix

quantity ( ) is a maximum likelihood estimate
quantity ( ) is a measured value
first three components of a 6 dimensional vector

the last three components of a 6 dimensional vector,
which are zero.

a nominal value

unit vector along X axis

the trace of the matrix ( }, where ( ) is square
the transpose of the matrix or vector ( )

the inverse of the square matrix ( )

azimuth angle

elevation angle

earth-probe range-rate

measurement error associated with azimuth angle
measurement error associated with elevation angle
measurement error associated with range-rate
deviation in { ) from a nominal value

frequency shift due to Brillouin scattering

measurement vector associated with azimuth angle
in the xyz frame

measurement vector associated with azimuth angle
in the pqu frame
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measurement vector associated with elevation angle
in the xyz frame

measurement vector associated with elevation angle
in pqu frame

measurement vector associated with range-rate
general measurement vector

error in estimate of the state deviation vector
vector of measurement errors, [a B y]T
flight-path angle

angle between x axis and p axis, except in Chapter 2 it is
the scattering angle

the standard deviation of the scattering angle

angle between X axix and p axis, except in Chapter 2 it
is wavelength in meters

the angle of refraction caused by passage of the signal
through the corona

standard deviation
the speed of light
semi-major axis, eccentricity, and inclination angle of
an ellipse, except that a subscript h indicates the same
elements for an hyperbolic trajectory
true anomal
angular momentum
rotation matrix (3 X 3)
state transition matrix (6 X6)
error covariance matrix (6X6)
correlation matrix of measurement errors (3 xX3)
optimum filter (6 x 3)

T T (

. T
matrix made up of measurement vectors k, d, c

3x6)

magnitude of sun-earth radius, except in Chapter 2 it is
the solar radius
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n,n-1,c

Xyz
Pqu
XYZ
bo

SOI

ix

magnitude of earth's velocity

the radial velocity of gases in the solar corona

magnitude of sun-probe radius

magnitude of probe velocity

the magnitude of the vector (_)

SUBSCRIPTS

refer to time (tn), a prior time (tn 1), and time of
conjunction

vector

wvector

vector

refers

refers

refers

refers

refers

is written in components of xyz frame

is written in components of pqu frame

is written in components of XYZ frame

to burnout

to quantity at the earth's sphere of influence
to earth

to sun

to hyperbolic trajectory

in Chapter 2 refers to the 75Mc/sec signal

in Chapter 2 refers to the 225Mc/sec signal

QUANTITIES

574,000 miles

1 AU

14.07528x10

p.e/3 x10~

15 2

ft3/sec
6

6

20.88x10" ft

92.9 XlO6 miles




CHAPTER 1

THE PROBLEM AND THE RESULTS

1.1 General Statement of the Problem

Sunblazer is a small, relatively low cost space probe. The
first probe is to be pléced into solar orbit in an effort to determine
some properties of the solar corona. The possibility also exists of
using similar probes for other deep space missions. The probe con-
tains a.transmitter that transmits signals which will be received at
a ground station. Certain characteristics of this signal are to be
used to track the probe. For the probe considered here, these
characteristics are the azimuth and elevation angle of the signal in
a station fixed coordinate system, with the possibility of range-rate
data inferred from doppler frequency shift. The problem considered
here is estimation of the probe state (i.e., the six components of
probe position and velocity) in the face of measurements which are
corrupted with errors. More specifically, this paper investigates
the estimation problem to determine methods of processing the avail-
able data to obtain an optimum state estimation. The ability to meas-
ure the azimuth and elevation angles is assumed to be unalterable,
Doppler frequency shift can supply range-rate data, However, our
ability to determine a frequency shift is limited by our ability to pin
down error sources such as drift in the transmitter and ionospheric
frequency shifts, as well as our ability to detect frequency shifts.
Using angular data only, it is possible to estimate the probe state to
within certain limits of uncertainty. If it is properly incorporated
into the estimation pbocedure, the addition of range-rate data, even
if poorly known (in a statistical sense) must reduce this uncertainty.
However, the sensitivity of the estimation procedure to the uncer-

tainty of the frequency errors, especially transmitter drift, was not



2

initially known. Because of this, it was not obvious which error
sources could be neglected or how well the transmitted frequency
needed to be known to gain any given reduction in uncertainty in state
estimation. The problem considered here, then, is how well probe
state can be estimated through application of filtering techniques to
range-rate as well as angular data.

1.2 The Approach to the Problem

a) Assumptions

The purpose of the analysis was to determine the improvement
in estimation of probe state gained by using range-rate data. The
Sunblazer probe considered here is designed to determine more ac-
curately the electron density of the solar corona. The effects of the
corona on an electromagnetic wave passing through it are not known
accurately enough to use the data effectively for state estimation.
While it is possible to formulate the problem in such a way that both
the effects of the corona and the state can be estimated, it was de-
cided that it would be easier conceptually to discontinue the filtering
of data for the purpose of state estimation, and to use prediction
techniques, during that period when the effects of the corona.are ap-
preciable but not well known, It was decided (see Chapter 2.3) to dis-
continue filtering for two weeks on each side of conjunction. For the
remainder of the mission, data is to be filtered to obtain the estimate
of probe state.

The nominal trajectory of the probe will be close to a two-body
ellipse around the sun, and the center of the earth is almost in cir-
cular orbit around the sun. Consequently, it is not detrimental to the
results of this analysis to assume as models,an elliptical orbit for the
probe and a circular orbit for the earth, as long as it is recognized
that in applying this analysis to an actual probe the true trajectories
of the probe and the earth would need to be used to get comparable
results.

In this analysis, it is assumed that the measurements of azimuth
angle, elevation angle, and range-rate are made from a receiving
station at the center of the earth. The azimuth and elevation angles
as measured from the actual ground station define the direction of the
probe. These angles are assumed to be normally distributed about

the true value with standard deviations of 1/100. If the actual ground



station location is known exactly, the direction of the probe can be
transformed from station coordinates to any desired earth-centered
coordinate system, where a new azimuth and elevation angle can be
defined to give the direction of the probe in the earth-centered coor-
dinate system. In this analysis it is assumed that this has been done,
and that the statistical properties of these new angles are unchanged;
that is, the new azimuth and elevation angles are normally distributed
about the true values and have standard deviations of 1/10°
Probe-ground station range-rate is the projection of total
probe velocity on the probe-ground station line. On the other hand,
range-rate as measured from the hypothetical earth-centered station
is the projection of total probe velocity on the line from the center
of the earth to the probe. These two directions, in general, are not
parallel. Because the ground station does not measure probe veloc-
ity components in the plane perpendicular to the probe-ground sta-
tion line, there is not enough information available to actually effect
a transformation of station-measured range-rate to the non-parallel
range line from the ceunter of the earth. If the probe is at any appre-
ciable distance from the earth, the difference in range-rate as seen
along these non-parallel lines will be small, Consequently, the
analysis presented here and the conclusions drawn from it will not
be adversely affected. However, the difference may be large enough
that in processing data for a real mission the analysis will need to be

altered to account for this difference.

It is assumed that the transmitted frequency is composed of
two parts. The first part is a mean frequency that may vary slowly
with time due to long term oscillator drift. The second part is a re-
sidual uncertainty that is normally distributed with a given standard
deviation. In this analysis, the standard deviation is used as an
independent variable. (explained in Chapter 1. 2b) It is assumed that
the residual uncertainties are short term phenomena, and that

their correlation time
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is very small compared to any sampling period. It is also assumed
that the long-term drift is either a known function of time (determin-
istic) or can be estimated so well that it can be considered determin-
istic compared to any residual uncertainties,

b) The Method of Attack

The method of attacking the problem was to assume range-rate
of varying quality to determine the sensitivity of the estimation un-
certainty to the uncertainty in range-rate data. Specifically, it was
assumed that the error sources and residual frequency uncertainties
caused the range-rate data to be a random process, normally distri-
buted about the true value and having a standard deviation of ¢,
which was assigned various values. To form a basis for compaprison,
a figure of merit was devised. This figure of merit is the uncertainty
in the estimate of each of the six components of the state vector at the
time of conjunction. The uncertainties in the estimate were then com-
puted for a set of range-rate standard deviations. The results are
then interpreted in terms of error sources that must be considered,
and the level of knowledge of transmitter drift required, to obtain
range-rate data of the quality needed to achieve a given amount of
reduction in the estimation uncertainties. Finally, some suggestions
are offered for determining the transmitter drift to the required ac-

curacy.
1.3 The Results

The analysis presented here was carried out for a probe having
an elliptic nominal orbit lying in the ecliptic plane and having a period
of 2/3 year. (The nominal trajectory is described in greater detail in
Chapter 2.) A filter is developed that will recursively estimate state
deviations from the nominal when data from an actual probe are avail-
able. The uncertainties in this state estimation process have also
been determined, so that the quality of the estimation procedure has
been evaluated using the statistics of the anticipated errors in the data
to be measured. The total number of measurement timmes was chosen
as 30, and 3 measurements (azimuth, elevation angle, and range-rate)
are made at each measurement time.

The assumption that the measurement errors are normally dis-.
tributed causes the estimation error in each of the 6 state components

to be normally distributed. The matrix E is the correlation matrix of
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these estimation errors, (also termed the error covariance matrix)
and the diagonal elements are the statistical variances of the 6 com-
ponents. The error covariance matrix at conjunction, EC, is calcu-
lated using range-rate data of varying quality., The square-root of
each variance (i.e., the standard deviatior) is used as a measure of
the uncertainty in estimate of the corresponding state component.
These standard deviations are functions of the quality of range-rate
data used. The results of the computations made are presented in
graphical form in Figures l.1 and 1.2 and again in tabular form in
Table 5.1.

It is apparent from these graphs that the uncertainties in the
estimation of the out-of-plane comgponents of probe state are insen-
sitive to the quality of the range-rate data., The direct cause of this
is the fact that nominal probe orbit was assumed to be in the ecliptic
plane. Consequently, only elevation angle measurements yield infor-
mation about the out-of-plane components, and the standard deviation
of the elevation angle errors is assumed to be fixed at 1/100. The out-
of-plane position uncertainty is relatively good compared to the in-
plane position uncertainties discussed below for a residual frequency
uncertainty of 3/4 cps. The velocity uncertainty is not as good.
However, if a nominal trajectery with an inclination to the ecliptic is
selected, range-rate information in the out-of-plane direction will be
available and should help reduce the out-of-plane estimation uncer-
tainties, especially the velocity uncertainty. On the other hand,
range-rate data permits the uncertainties in the in-plane components
to be reduced to less than 200/0 of the uncertainties when only angular
data are filtered to obtain a state estimate. To reduce the uncertain-
ties to this level, it is necessary to reduce the residual frequency un-
certainties to 3/4 cps (based on a transmitted frequency of 75Mc/sec).
The method suggested for doing this is to take an average of 400 sam-
ples of apparent doppler shift (corrected for transmitter drift and re-
lativistic effects) taken at 10 second intervals for 67 minutes. This
average is used as an estimator of the true doppler shift due to range-
rate. Effectively, then, the problem has been separated into two dis-
tinct filtering problems. The first is to occur for 67 minutes daily to
reduce residual frequency uncertainties to a low level. The other

filtering occurs once daily on the measured azimuth, elevation angle,
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and range-rate data to estimate the probe state recursively.

To obtain an estimate that is this good, long term frequency drift
must be well known. To determine this drift, it is suggested that a
transmitter model with an unknown, but constant, parameter be hypo-
thesized.

f(t) = 75Mc/sec 1 + at] (1.1)

where the parameter "a' is the drift rate. The state vector is then ex-
panded to 7 components. The problem then must be reformulated in
such a way that the measurements are processed with a new filter to
estimate the deviations in position and velocity and the model para-
meter, "'a."" This analysis was not carried out and is suggested as
possible extension of this study.

These results and conclusions are discussed in greater detail in
Chapter 5, and the problem of state estimation and calculation of the

error covariance matrix at conjunction are covered in Chapter 4.
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CHAPTER 2

SYSTEM ERRORS AND ASSUMPTIONS

The Sunblazer probe considered here is a lightweight solar probe
that will undergo superior conjunction one year after launch. The
probe will have on board a transponder and a transmitter that broad-
casts at two frequencies, a primary frequency of about 75 Mc/sec,
and a secondary frequency of exactly three times the primary fre-
qguency. The receiving station will be located at E1 Campo, Texas,
and can measure the azimuth and elevation angles of an incoming
signal in a station fixed coordinate system. At sometime period
during the mission the transmission path will pass through the solar
corona. All signals will pass through the atmosphere and the iono-
sphere. The nature and size of errors inherent in the equipment and
some basic assumptions are considered in this chapter.

2.1 The Transponder

The probe carries a transponder designed to operate for one to
two weeks. Consequently, it can supply range, range-rate, and
angular data during the early phase of the mission. However, it is
assumed that the nominal trajectory (to be defined later) will be suf-
ficient for the purposes of this analysis. Consequently, transponder
errors are not considered here, although a possible use of the trans-
ponder is discussed in Chapter 5.

2.2 Angular Data

The receiving station for this project is at El Campo, Texas.
It is assumed that the station location is known exactly, so that an-
gular data received at the station can be transformed to the center
of the earth with no errors except those made in measuring the azi-
muth and elevation angles at the receiving station. A phased array

antenna will be used to determine these angles. It is assumed that
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the errors in the angles measured at the station form an unbiased nor-
mal distribution about the true values. Based upon the expected ac-
curacy of the El Campo antenna, the standard deviations of the angular
measurements are taken to be 1/100. It is assumed that these angles
can be transformed to the center of the earth to give azimuth and ele-
vation angles (shown in Figure B.l) that have unchanged statistical
properties.

2.3 Effects of the Solar Corona

One of the goals of the probe considered here is to determine
the electron density of the solar corona, which is not very well known.
Theoretical results and some experiments using star occultations give
a clue to the magnitude of the effects on electromagnetic radiation
passing through the corona. Three of the effects are refraction, scin-
tillation, and frequenrcy shift due to Brillouin scattering. It is pos-
sible to formulate the estimation problem in such a way that data can
be filtered to obtain an estimate of both probe state and the effects of
the corona. However, for reasons of conceptual and analytical sim-
plicity, the approach will be to filter data to estimate the state until
the effects of the corona become significant. During the period of
significant corona effects, prediction techniques will be used to esti-
mate spacecraft state, During the prediction,received data will be
available for determining the corona's electrondensity, which is not
done in this analysis.

a) Refraction

An electromagnetic wave passing through a low pressure, moving
gas is, based upon an Allen Baumbach model of the corona (8:26), re-

fracted by an amount ©, where

2
o= 76;‘ (2.1)

r

Here, © is the refraction angle in minutes of arc, \ is the wavelength
in meters, and r is the displacement {from the sun) of the transmis-

sion path in solar radii. For our problem,

1216
61 = 3 (2. 2a)

r

_ 1
92 =3 91 (2. 2b)
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where 91 is the angle of refraction for the primary signal (75Mc/sec).
A graph of approximate refraction angles as a function of r is shown in
Figure 2.1. If the path displacement is greater than 25 solar radii,
ignoring refraction in the corona will not appreciably effect the accu-
racy of the state estimation procedure, because the refraction angle
will be much smaller than 1/10°

b) Scintillation

Electromagnetic waves passing through a turbulent refractive me-
dium are scattered about a median ray (which has already been refracted
through an angle ©). The arriving,scattered waves are assumed to have
a normal angular distribution about the median ray(8:25). The stand-

ard deviation of the scattering angle, ;rﬁ, is given by

2
_ _ K\
oy - ¢0_ — (2.3)
r
where K and n have been empirically determined to be
11 <K <50 (2. 4a)
1,2 <n <2,2 (2. 4b)
Picking K and n to give the largest standard deviation yields
_ 800
¢o,1 T 1.3 (2. 52)
T
B 2= 90 | (2. 5b)
0,2 970,1 :

A graph of ¢o as a function of r is shown in Figure 2.2. Scintillation
itself contributes no direct error. It may create a problem in detec-
tion of the signal if ¢o is too large compared to the beam width of the
antenna.. The bearmn width of the antenna is sufficiently large com-
pared to ¢o that, except for displacements of the transmission path
of less than three or four solar radii, signal detection is possible.

c) Frequency Shift

At very low gas pressures the thermal velocity of molecules can
produce a doppler effect. (5:10-21) In the sun's corona, this doppler
shift is due to Brillouin scattering of the wave. It is found that (Ref.14)

Ay 2 2 sin® —2‘3 (Vm/c) (2.6)
T

where _/_\fB is the frequency shift due to Brillouin scattering, © is the

angle of refraction, c is the speed of light, and Vo is the radial ve-
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locity of the low pressure gases in the solar corona. Assuming © is

a small angle measured in radians, we find that

6
5%10
AfB 1 :_ré_— (vm/c) cps (2.7a)
1.
Afy =—;z9-x105 (Vm/c) cps (2. 7b)

The ratio Vm/c cannot possibly exceed one, and is more likely to be on
the order of 10-3. It would appear that, for purposes of state estima-
tion, this frequency shift can be neglected for transmission paths dis-
placed from the sun by more than 10 solar radii.

d) Summary

Based upon the above analysis, the errors caused by neglecting
the effects of the corona can be safely assumed to be negligible for
transmission path displacements greater than 50 solar radii. This is
the case if the angle between the sun-earth line and the earth-probe
line is greater than 16°% which is true for the entire mission except
0.04 yr. on both sides of conjunction. The conclusion, then, is that
filtering techniques which do not include the effects of the corona
should be used until about 2 weeks before conjunction and should start
again 2 weeks after conjunction. During the intervening 4 weeks,
state estimation should be done through prediction, and data should
be used to carry out the experiment.

2.4 Atmospheric and Ionospheric Effects

The atmosphere will refract electromagnetic radiation passing
through it. It is assumed that a method exists of determining the
azimuth and elevation angles of the incoming wave to within the stated
accuracy regardless of refraction.

Electromagnetic radiation passing through the ionosphere will
undergo a frequency shift. A method exists (4:104) for using two trans-
mitted frequencies and their corresponding doppler shifts to eliminate
first order effects of ionospheric frequency shift and reduce the higher
order effects to the extent that they are on the order of 1017 cps.
Thus, this method can be used to reduce ionospheric frequency shift to
a truly negligible level, so that this error source is not considered

further.
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2.5 Range-Rate Data and the Transmitter

Range-rate data will be available from the observed doppler fre-

quency shift of the received signal. The governing equation (7:530) is

g 1-/c
£ o=f (2.8)
S F72

where fr is the received frequency, ft is the transmitted frequency, p
is the probe-earth range-rate and is positive for increasing range, and

V is the total probe velocity. This can be rewritten as

sle=tr i 2 -ve® (2.9)
ft f1:

The first term represents the standard doppler effect. The second term

represents a relativistic effect, the discussion of which is reserved for

Chapter 5. In general, the maximum frequency shift due to range-rate

is about 7. 5Kc/sec and the relativistic contribution is on the order of

1 cps.

The problem considered in this analysis is the estimation of probe
state using the data available. The quality of the range-rate data de-
pends upon a knowledge of the transmitted frequency. The transmitter
now planned for use on board the Sunblazer probe is to broadcast at
nominal frequencies of 75Mc/sec and 225Mc/sec. It has a long term
stability of 1 part per 108 and a short term stability of 1 part per 10?

The long term variations are somewhat difficult to describe. It seems
likely, however, that over short periods of time (4 or 5 hours, for ex-
ample) the long term frequency variations can be considered stationary
at some value. The short term variations, then, are reasonably char-
acterized as an additive, normally distributed noise having zero mean

and a standard deviation of 7. 5cps. The correlation time of this noise
is assumed to be small compared to any sampling period that might be
used to receive data. Over longer periods of time, the mean value of

the transmitted frequency will probably be subject to a time dependent

drift and, additionally, may have a temperature dependent drift caused
by changes in the distance of the probe from the sun. For the time

being, the transmitted frequency, ft(t)’ will be written as

ft(t) = f(t) + n(t) (2.10a)
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where

n{t) =0 and ft(t) = f(t) (2.10b)

Here, f(t) is the time dependent mean value. It is assumed that f(t) is
either known (deterministic) or can be estimated so well that it is de-
terministic compared to other frequency uncertainties in the system.

Because of the difficulty in describing the mean value of the
transmitted frequency as a function of time, a different approach to
the problem is taken. If it is assurmed that transmitter drift is known
and can be accounted for in the detected doppler shift, then the re-
sidual frequency uncertainties, due to short term transmitter vari-
ations and, perhaps, errors in detection, are assumed to cause the
measured range-rate data to be a normally distributed random vari-
able with a mean value equal to the true range-rate. The standard
deviation of this distribution, O p, is a measure of the quality of the
range-rate data, and can be interpreted in terms of the residual fre-
quency uncertainties. Range-rate data of varying quality is used to
estimate probe state. A figure of merit (described in Chapter 4) then
permits comparison of the uncertainties in the estimated probe state
for various values of Opg. These results are then interpreted to specify
the level of certainty required of the transmitted frequency in terms of
which error sources must be considered (e. g., relativistic effects) and
how well the long term frequency variations must be known to gain a
given reduction in uncertainty of the estimate of probe state. This is
discussed in greater detail in Chapter 5.

2.6 Circular Earth Orbit

If the earth is in an elliptic orbit, its position and velocity vec-
tors are relatively complicated functions of time when they are written
in a flight-path coordinate system centered at and defined by the probe.
This particular coordinate system (described in Appendix B.2c) is to
be used because in many respects it is the most convenient. The pur-
pose of this analysis is to determine how well the probe state can be
estimated using the available data. Because earth position and velocity
are known well, the analysis here will not be appreciably effected by
assuming a simpler model of the earth's orbit, as long as the model is
a reasonable approximation to the true orbit. Hence, by assuming that
the earth is in circular orbit, which is reasonable because its eccen-

tricity is only 0.01673, we have the gain that earth position and velocity
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in the probe centered coordinate system are simple sinusoidal functions
of time from injection of the probe into elliptic orbit, A further gain is
that the analysis can be carried outfor.anarbitrary launch date.

Another aspect of this assumption is that in reality it is the earth-
moon barycenter that orbits the sun. The additional velocity of a point
on the surface of the earth due to rotation about the barycenter is about
0.3X10-2AU/yr. In terms of frequency shift, this motion can contri-
bute as much as 4 or 5 cps to the apparent doppler shift due to range-
rate. (A summary of comparative frequency shifts is given in Table
2.1) Because of the simplified model chosen for the earth's orbit, this
effect is not considered. For state estimation of an actual probe, the
analysis presented here would need to be modified by specifying a
launch date and considering a more accurate earth orbit, which is
elliptic motion of the barycenter around the sun, and motion of the
earth about the barycenter.

A further aspect that needs to be considered is rotation of the
earth about its axis. In this analysis, the difficulty has been circum-
vented by assuming that the data has been measured at an earth-
centered receiving station. However, frequency shift due to the ro-
tational velocity of the receiving station on the earth's surface can
be on the order of 100 cps (maximum), so that earth rotation defin-
itely must be considered in processing the real data.

2.7 The Nominal Probe Orbit

The probe is to be placed in a nominal orbit that has the following
properties. Injecttion occurs at the time the probe crosses the earth's
sphere of influence and at aphelion of the heliocentric, two-body ellipse.
Aphelion radius is 1 AU and perihelion radius is 0,528 AU. The period
is 2/3 yr, so that superior conjunction occurs 1 yr after injection and
at perihelion of the probe orbit. The inclination of the nominal tra-
jectory to the ecliptic plane is 0% The probe will never actually follow
this nominal trajectory. An actual trajectory that considers the grav-
itational attraction of bodies other than the sun can be calculated.
However, this would seriously complicate the analysis presented here,
and would seem to offer no particular benefit, because the assumed
nominal is a good enough approximation to permit investigation of the
state estimation problem without jeoperdizing the validity of the con-

clusions drawn (Chapter 5) from the investigation. For an actual
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probe, however, the analysis provided here would need to be modified

to include the true probe trajectory.
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TABLE 2.1

RELATIVE SIZES OF FREQUENCY SHIFTS (75Mc/sec Signal)

Cause

Range-rate
Relativistic effect
Short-term transmitter uncertainty

Long-term transmitter uncertainty

Ionospheric Scattering

Ionospheric Scattering, corrected
using 2 frequency method

Rotation of earth about axis

Rotation of center of the earth
around earth-moon barycenter

Approximate Frequency Shift

7.5Kc/sec (maximum)
1 cps (order of magnitude)
7 1/2 cps (standard deviation)

Long-term drift assumed
deterministic

Unknown

=17
10 cps (Order of magnitude)

100 cps (maximum)

4 cps (maximum)
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CHAPTER 3

MEASUREMENT VECTORS AND DEVIATIONS

In developing a method for determining Sunblazer position and
velocity from measurements, it is useful to linearize the problem
around a nominal trajectory and consider deviations away from this
nominal. The development shows that deviations in the measurements
are related to deviations from the nominal trajectory in position and
velocity through functions called measurement vectors. These meas-
urement vectors depend upon both time and the nominal trajectory.
The derivation of the measurement vectors and their evaluation along
the nominal trajectory are the subject of this chapter.

3.1 The State Deviation Vector and Measurement Deviations

The six components of Sunblazer position and velocity constitute
a state vector, ﬁ(t). Based upon a precalculated (nominal) trajectory
it is possible to calculate the values of measurable quantities as func-
tions of time and nominal spacecraft state, N Due to unknown
launch errors, and perturbing accelerations not considered in deter-
mining the nominal trajectory, the actual state will differ from the
nominal state by the state deviation vector, SE

8;_(::31_-_)51\1 (3.1)

The state vector and most other variables used are functions of
time. Because, in general, we are interested in them at some spe-
cific time, their functional dependence upon time will be suppressed
until it is needed.

It is possible to write a very general relation for the measur-

able quantities as functions of nominal state.

my = £x) (3.2)
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Here, my is any measurable quantity, and f(fN) is some corre-
sponding scalar function. On the actual trajectory, the quantity we

ought to measure can be written as
m = f(x) (3.3)

This differs from m__ because the actual state differs from the nominal
state by S.’E The measurement deviation, Sm, due to actual state de-

viation can be written as

gmr—'m—mN (3. 4)

It would be expected that non-nominal perturbations and launch
errors are small enough to keep 5_}5 small. If this is true we would
hope to find that measurement deviations can be approximated as
linear functions of the state deviation at any specified time.

1f equation 3.3 is expanded in a Taylor Series expansion about
the nominal state (See Appendix B.1), this in fact happens, and the

result is
$§m =n"8 (3. 5)

The measurement vector, E, is a function of time, and at any speci-
fied time is evaluated at the nominal state.

3.2 The Measurable Quantities

As now envisioned, the receiving station for the Sunblazer pro-
ject will be located at El Campo, Texas. Using a phased array an-
tenna, the azimuth and elevation angles of the received signal, and
hence the spacecraft, with respect to an earth station can be deter-
mined within a certain accuracy. Furthermore, doppler data will be
available, from which range-rate can be inferred, within certain bounds.
The limitations on measurement accuracy are discussed at the end of
Chapter 2.

For the purpose of this analysis, it is assumed that some tech-
nique exists for transforming this information to the center of the
earth, where, at any specified time, we have three measurements.
These are range-rate, elevation angle, and azimuth angle in some
useful coordinate system. (Coordinate systems are discussed in
Appendix B. 2)
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Because we cannot measure perfectly, the measurement devia-
tion we actually measure, 31‘?’1, differs from the deviation we ought to
measure, gm, by an amount . It is assumed that the three measure-

ments have statistically independent and unbiased errors. Then,

$m = Smta (3.6)
and & = &m (3.7)

It is also assumed that the measurement error, @, is independent of
the true measurement deviation, Sm; and that gﬁi is normally dis-
tributed about Sm, the true measurement deviation. Then, a* is the
variance of this normal distribution. These assumptions will be of
use in the next chapter, which gives a procedure for state deviation
estimation.

The measurable quantities are azimuth, A; elevation, L; and
range-rate, p. The azimuth and elevation angles are functions of

position only. Consequently, we can write

§a=xT 8x=[xT ;gﬂ x=k, OR (3. 8a)
fL=a" §x=4] SR (3. 8b)

Range-rate deviation is a function of the entire state deviation, so that
. T
§p =c 8x (3.8¢)

The vectors _15, g, and_s are the measurement vectors. For conven-
ience in later use they are to be written in the flight-path coordinate
system (described in Appendix B. 2).

3.3 The Measurement Vectors in the Flight-Path Coordinate System

The measurement vectors are derived in an earth-centered
(xyz) coordinate system in Appendix B, sections 3 and 5, and trans-
formed into the flight-path coordinate system in Appendix B.4. The
results are summarized below,

K :pi{ sin(A- @) cos(A-§) 0 ggl (3.9a)

at=lo o = : 07) (3.9b)
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S lep) g -(p-pel

€= fremmm e .- - (3.9¢)
&
The angle, ¢, is the angle from the sun-earth line to_llg.
F(t) = n(t) - 2wt (B.12)

The angle, A\, is defined in Appendix B, section 4.

These vectors are evaluated along the nominal trajectory at spec-
ified times. The procedure for doing this is outlined in the remainder
of this chapter.

3.4 Determination of the Measurement Vectors Along the Nominal

When we make a measurement, the one variable we know well
is time. Because the measurement vectors and the nominal values of
the measurable quantities are functions of the nominal orbit, we must
know the nominal state and certain other parameters as functions of
time. This section describes the determination of these at any time.
For the work which follows, Figure 3,1 will be of use. The units to
be used are the year and the astronaumical unit (92.9 million miles).
The orbit is assumed to be the known, two-body ellipse that was spec-
ified in Chapter 2.

a) Nominal Satellite Radius (magnitude) and Velocity Vector

For an ellipse we have the relationship:

_a(l-e?)

RN_H-e cos f

(3.10)

where all orbital elements are for the nominal elliptic trajectory.
Here, fis the true anomaly and can be found at any time by specifying
the time and solving Kepler's problem. There are numerous tech-
niques for solving Kepler's problem, so that this aspect is not con-
sidered further.

For the satellite, the magnitude of the velocity is:

1
vy = [us(%N - %ﬂ /2 (3.1)
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The direction of V specifies_lq. Hence,

N
0] ' (3.12)

b) Nominal Satellite Radius Vector and Flight-Path Angle

The radius vector, R, is to be expressed in the flight-path coor-
dinate system. From Figure 3.1, it can be seen that to determine R
requires knowledge of Y, the flight-path angle. Use of equations 3,10
and 3.1l and the definition of angular momentum supply us with knowl-
edge of VY.

Hy = Ry XV (3.13a)

= inV
EN! Ry Vi & (3.13b)

H = pa(l-e) (3.13¢)
Substitution of equations 3.13b into 3.13c and simplification with equa-
tion 3.10 gives

-1 l+ecosf

Y =sin (3.14)

Z
J1+2e cosfte

This relation gives an angle in the first quadrant. However, at cer-
tain points on the orbit, ¥ may be in the second quadrant, This can
be taken care of by noticing that the quadrant of v depends upon the
quadrant of f. (See Figure 3.3) Specifically,

sin_l l+ecos f , Ogfgm

-Jl+2e cos f+# ez'

V= | (3.15)
T- sin.1 1tecos { wef{2m
.Jl+2ecos ft+e?
Knowing W, it is a simple task to write R .
RY = [siny cosVY 0] R (3.16)
_N ! 1 N .
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c) Nominal Magnitude of Range

From Figure 3.1 and the law of cosines we have

p% = RZ +r° - 2Rrcos(f+180 - 2mt) (3.17a)
which reduces to

1
PN = [RI%I +1+2RNcos(f- 21rt)] /2 (3.17b)

d) Nominal Azimuth Angle

Using the law of sines and Figure 3.1, we find that

sin A _ sin(f + 180 - 27t) _ _sin(f - 2wt)

R P p (3.18a)
so that
A =sin b | -BN gin(f - 2wt) (3.18b)
N N

e) Nominal Earth Position and Velocity Vectors

In the inertial (X, Y, Z) reference system, the earth's position

and velocity vectors are:

ixTYZ = [cos2nt sin2wt O] (3.19a)
vavy = [-2msin2wt 27 cos2mt 0] (3.19b)
YXvz. :

Using the matrix equation B.:13 with # replaced by A gives the

desired result in the flight-path coordinate system.

T T__T
Ixyz M =Ijqy = [cos(X-2mt) -sin(h-2wt) 0] (3.20a)
viyz M' =y, = [2msia(-2nt) 2mcosia-2nt) 0] (3.200)

where:
X = \V+f+“/2 (3.21)

f) Nominal Range and Range-Rate Vectors

Straightforward vector addition now gives the range and range-
rate vectors.

ey =Ry- I (3. 22a)
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N ¥N Y (3.22b)

3.5 Results

In order to determine any nominal variable then, we start by
specifying the time and solving Kepler's problem for the true anomaly.
The next step is to solve the equations presented above in the order
given. These results are then used to evaluate themeasurement vectors;
k, 4, and c. Furthermore, the information calculated here also de-
fines the nominal probe state and nominal values for the measurable
guantities. Hence, we need only the measured quantities to determine
the actual measurement deviations. These measured deviations, to-
gether with the measurement vector, will later be used to estimate the

state deviation vector.
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CHAPTER 4

MAXIMUM LIKELIHOOD ESTIMATION AND THE FIGURE OF MERIT

As stated in the last chapter, the measurements actually made
will yield measurement deviations which have errors. These meas-
urement deviations are related to the state deviation at the measure-
ment time, and the state deviation at any time can be extrapolated to
any other time with the state transition matrix. Given enough meas-
urements and the statistics of the measuring system, it is possible to
estimate the state deviation. Two ways of doing this are discussed in-
this chapter. However, to estimate the state deviation, actual meas-
urements are needed. On the other hand, the statistics of the meas-
uring system are sufficient to determine how well the estimation pro-
cedure would work if "live' data were available. Consequently, the
most important section of this chapter is that which develops a ''figure
of merit' for the estimation procedure. This figure of merit will give
the level of uncertainty in the estimate that would be made if measure-
ments were available.

4.1 The State Transition Matrix

The state transition matrix is a 6X 6 matrix that relates the state
deviations at different time points along the trajectory. A mathemat-

ical statement of this relation is:

Sxtt ) =Fe ot ) Sxtr ) (4. 1a)

where}?)r is the state transition matrix. For the remainder of this anal-

ysis, the notation will be shortened to

8§n: n,n-1 S-}E-n-l (4.1b)
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Note also .1
fn-l,n :ﬂ n,n-1 (4.1c)

If the nominal trajectory is an ellipse, the state transition matrix is an
analytic function of the two time arguments. Writing the state deviation
vector in a flight path coordinate system causes a further analytic sim-
plification. (See Reference 12) This is the primary motive for assuming
an elliptic nominal trajectory and writing vectors in the pqu frame.

In the following analysis the state transition matrix will be used
to propagate the state deviation at one measurement time to other meas-
urement times.

4.2 The Error Covariance Matrix

The estimate of the state deviation vector at time t is Sgn’

and differs from the true state deviation by an error vector, e -

- bx (4.2)

E =e el (4.3)
n -1l -1}

The measuring system and the estimation procedure to be developed are
such that each component of e, is a normally distributed random vari-
able, with zero mean, but not necessarily independent of the other com-
pouents of & The diagonal elements of En are then the variances of
the six components. This will be important later in the analysis. For
now, the real importance of the error covariance matrix is that the

sum of the diagonal elements (the trace) is a quadratic function of &

tr[EJ=e2=eTIe (4. 4)
n n =

4.3 Maximum Likelihood Estimation

It is assumed that, at any measurement time, the azimuth and
elevation angles and range-rate are all measured. Then, after n
measurement times, there are 3 Xn measurement deviations available
that can be related to the state deviation at any point on the trajectory.
These measurements can be ""batch processed'" to give a maximum
likelihood estimate of the state deviation. (See References 2 and 11)

It is shown in Reference 11 that any other method of filtering the
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measurementé in a manner that minimizes a quadratic function ofgn
will yield an estimate that is identical to that obtained by ''batch pro-
cessing' the measurements. Consequently, a method of recursive
estimation is developed below. This is a more convenient approach
because ''batch processing'' can become cumbersome if the number of
measurement times becomes large.

4.4 Recursive Estimation

Assume that, one way or another, there exists at time t a prior
estimate of the state deviation vector, 83n-1’ and an associated
error covariance matrix, En-l' Using the state transition matrix,

these can be updated to time t

$» (4. 5)

52 =
—n —n-1

n,n-1

T

1
En T Fq,n-1 En-l gn,n-l (4. 6)

At this point it is useful to define a measurement deviation vector, made

~ o~
up of the set of measured measurement deviations; ‘SAn’ SLn, and
s &
n

$

= &in (4.7)

~
m
=—n

~
| “Pn |

Specializing equation 3.6 to the measurements available gives

SA [a]
n
(S_r:ﬁn = éLn + |Bl = égn'i-_p._n (4. 8)
Léﬁnl LY

Based upon the relations above, it is possible to formulate an estima-
tion procedure that uses the prior estimate, updated with the transition
matrix, and a weighted difference between the measured deviations and

an estimate of what the deviations ought to be.

$2 = % +W [dm - §m] (4.9)
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where

Sar = |aT| &3 =u Sz (4.10)
— - “n

Wn is the filter, and is to be chosen to minimize the trace of the error
covariance matrix, which is a quadratic function of En' This filter is
derived in Appendix D using standard variational techniques, and is
shown to satisfy both necessary and sufficient conditions. The result
is an optimum filter, W:l), which gives a maximum likelihood estimate

of the state deviation vector.

woT - (g &' uT
n n n

n

+A ltH B (4.11)
n n n

where An is the correlation matrix of measurement errors.

« . B
az 0 0
T _ 2
. An SRk = 0 B i (4.12)
2
0 0
| Y]

The measurement errors are assumed to be independent and unbiased.
Using the optimum filter permits the following recurcive formulas to

be written.

82 =(1-w°H ] &2 +w° S& (4.13)
-—Nn n n -1 n —l

E =[1-w°H |E' =E' [1-Tw°T) (4.14)
n n n n n n n

Equation 4.13 permits maximum likelihood estimation of éfn
when real measurements are available. Equation 4.14, however, is a
function only of the statistics of the measurement system, the measure-
ment vectors, and some initial error covariance matrix. The diagonal
elements of En give the variance of the estimation error in each of the
six components of the state vector. Consequently, although the state
deviation vector itself cannot be estimated, equation 4,14 permits de-
termination of how good the estimate would be if live data were avail-
able. This is an important result, because if gives a relationship that

can be used to determine the sensitivity of the estimation uncertainties
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to uncertainties in the measurements available.

4.5 Figure of Merit

As outlined previously, the approach taken in this analysis was to
assume that the measured data have certain statistical properties, and
then interpret these properties in terms of the level of knowledge re-
quired of the transmitted frequency and the error sources. More spe-
cifically, angular measurements were assumed to be normally dis-
tributed with standard deviations of 1/10° Range-rate data was also
assumed to be normally distributed, but the standard deviation, o} P,
was defined as a variable. This permits a comparison of the state
estimate for range-rate data of varying quality. This standard de-
viation then becomes a measure of how well the transmitted frequency
must be known, and what error sources must be considered, to esti-
mate the probe state to a specified level of uncertainty.

To determine the sensitivity of the state estimate to the quality
of range-rate data, a figure of merit was needed. An obvious choice
was to use the diagonal terms of the error covariance matrix at some
point on the trajectory. The point selected was superior conjunction,
because it is during the time period just before and after conjunction
that the primary Sunblazer experiment is to be carried out.

Equation 4. 14 provides a method of calculating the error co-
variance matrix. However, because of the availability of a computer
program, an alternate method was used to determine the error co-
variance matrix. The program is a modification of a program written
by Mr, John Fagan of the Experimental Astronomy Laboratory, M.I. T.
The modified program is included in Appendix A, The error covari-

ance matrix is calculated in the following manner.

ElogrlygT a-ly (4.15)
n n n n n

In Appendix D it is shown that, if the error covariance matrix is cal-
culated by taking the inverse of equation 4.15, the result is identical
to the error covariance matrix as calculated using equation 4. 14,
Taking t as the last measurement time before conjunction, and ex-
panding E;l-l in terms of an updated covariance matrix and measure-

ments made at time tr1 1 we find that
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1o gT-1 -1 g1 T ,-1
E = g En—lgn,n-l + Hn An Hn

n n,n-1
(§T ! Sl ol T -1 N
= ﬁn RS NP NP INPTP - SUPI. NP - SUD B S
T -1
+H ATH (4.16)

If we continue to expand Ei_l all the way back to injection (I) and simplify
using
T-1 ~T 1 & T -1
g gl - g

=
Fa,t ~ nn 1 t¥l,t .7 n=t=1 (4.17)

the result is

B, =f 7 B nI+Zp’ H] A7 H, B (4.18)

This is then updated to conjuction. The error covariance matrix at con-

junction is calculated using equation 4.19.
1 T-1 -1 3-1 N T-1,,T 1 1
=f.1 B J-Z’Tc,IJ“E . H AT H (4.19)
i=0

To use equation 4.19, the error covariance matrix at injection of the
probe into its heliocentric elliptic orbit is needed.

4.6 The Covariance Matrix at Injection

Injection (subscript 1) is defined as the time at which the probe
crosses the earth's sphere of influence, and is assumed to occur at
time zero and at aphelion on the nominal trajectory. It is assumed
that at injection the best available extimate of the state deviation vector
is zero (i.e., no measurements have been made).

With Sgl = 0, the actual probe state differs from the nominal
state by exactly the negative of the error vector,

55_1 = -e; (4. 20)

The error covariance matrix at injection becomes

E, = ox 53_:_1 (4.21)
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It is assumed here that burnout errors are independent and unbiased,
and that they can be extrapolated along an escape hyperbola (with re-
spect to the earth) to the sphere of influence, where they are still as-
sumed to be independent (at injection only) and unbiased, This means
that the elements of EI will be zero everywhere except on the main
diagonal. On the main diagonal, the elements will be the variances of
the burnout errors, extrapolated to injection.

The evaluation of these variances is done in Appendix C, The

variances are calculated for the following mission, (9:47)

launch date 22 July, 1966
payload 24 1bs,

launch azimuth 120°

launch elevation angle 73.8°

period 2/3 yr.
aphelion radius 1 AU
perihelion radius .528 AU
inclination to the ecliptic 0°

launch site Wallops Island

This particular mission was selected because this is a typical
mission for which data was available from a Ling-Temco-Vought,
Inc., Astronautics Division feasibility study (Reference 9). Nineteen
major error sources were used in the study. The results of the study
were standard deviations of 0.00057 AU in aphelion radius, 0.44° in
inclination angle, and 110 ft/sec in burnout velocity at a nominal burn-
out altitude of about 106 ft. Based on the calculations of Appendix C,

the diagonal terms of the error covariance matrix at injection are

2 _ 2 _ 2 _ <10-8 2

o‘Rp = dRq = O‘Ru = 10.7X10 ~ (AU) (4.22)
2 _ 2 _ -4 2

Typ = Oyy = 15.3x10" 7~ (AU/yr) (4.23a)
2 -4 2

Cvq = 2.9%x107 " (AU/yr) (4.23Db)

These variances were used as the diagonal elements of the error
covariance matrix at injection, for use in equation 4.19. In the actual
data processing problem, measurements would be available every day.
It was decided, however, that 30 measurement times would be suffi-

cient to give a good indication of the sensitivity of the estimation
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uncertainties to data uncertainties without using an inordinate amount
of computer time. The error covariance matrix at conjunction was
then calculated using 30 measurement times chosen more or less uni-
formly from t=0.05 yr to t=0,96 yr, except that the times were more
dense during periods of relatively high range-rate. The results of

these calculations and their interpretation is covered in Chapter 5.
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CHAPTER 5

CONCLUSIONS AND SUGGESTIONS

The figure of merit calculations were carried out for range-rate
data with a standard deviation varying from 300m/sec to 0.03m/sec.
In terms of uncertainty of the residual frequency deviations, this is a
range of 75 cps to 3/400 cps for nominal 75Mc/sec signal. The out-
put of the calculation was the 6x 6 error covariance matrix at con-
junction, EC. Because of the assumption of normally distributed and
unbiased measurement errors and the use of maximum likelihood es-
timation, the estimation errors are also normally distributed and un-
biased. Thus, each diagonal element of EC is the variance of the
normal distribution of the corresponding component of the state vector,
and the square root of this variance is the standard deviation. The
standard deviations of the estimation errors in probe position and ve-
locity were calculated for each assumed range-rate standard deviation.
These results are given in tabular form in Table 5.1 and in graphical
form in Figures 1.1 and 1,2, It is found that the uncertainty in the
out-of-plane components of the state vector (as measured by their
standard deviation) is decoupled from the range-rate data. It is
found that, for the Sunblazer probe considered here, there is a rea-
sonable expectation of reducing the uncertainties in the in-plane com-
ponents by 800/0 compared to the uncertainty in the estimate if only
angular data are filtered. This requires that the residual uncertainty
of frequency deviations be reduced to 3/4 cps (standard deviation).
Methods of achieving this are discussed in this chapter. It is also
found that the estimation uncertainties can be reduced even more if a
better frequency standard is available. This is also discussed, as

are possible extensions of this analysis.
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5.1 Out-of-Plane Components

Because the nominal trajectory used in this analysis lies in the
ecliptic plane, the estimation uncertainties in the out-of-plane position
and velocity are insensitive to frequency uncertainties. Because the
azimuth angle, as measured from the hypothetical earth-centered re-
ceiving station, is measured in the ecliptic plane (see Figure B.1) my
opinion is that the out-of-plane components are also insensitive to
errors in the azimuth measurements. It was found that, for these
components, the standard deviation in the position estimate, GRu
is 4000 km and the standard deviation in velocity is 1.25x10" krn/sec.
These values arise when the standard deviation of the elevation angle
errors is 1/100. As a matter of interest, it was also found that if the
standard deviation of the elevation angle errors was 10, then these
uncertainties grow to 21,000 km and 1 km/sec respectively.

5.2 In-Plane Components

If only angular data are filtered, the uncertainties in the esti-

mate of the in-plane components of position and velocity are

G'RP = 11,520 GRq = 49,400 km (5.1)

-2 _ -3
Tvp 1.98x10" “km/sec Tyq = 4:73%10 km/sec  (5.2)

If range-rate measurements are incorporated into the estimation pro-
cedure, the uncertainties become functions of the quality of these
measurements. (See Figures 1.1 and 1.2) The results of the calcula-
tions made for this analysis are given in tabular form in Table 5.1,
This information indicates that if the residual uncertainty of the fre-
quency deviations can be reduced to 3/4 cps, then the in-plane uncer-
tainties can be reduced to less than 200/0 of the uncertainties given in
equations 5.1 and 5.2 for the filtering of angular measurements only,

These uncertainties are

1]

Or

b 2,220 km O'Rq = 7,420 km (5. 3)

3.08x10 >km/sec .. = 0.885x10 km/sec (5.4)

Vq

Ovp

It is interesting to compare these results to the results obtained

by making a single measurement of the azimuth and elevation angles
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just prior to conjunction., In this case, we can make no estimate at all
of the probe velocity or its radial position. The two components that
can be estimated are the tangential (lp) and out-of-plane (_l_u) position
components, and the uncertainty of each of these is 386, 000 km.

At levels of frequency uncertainty below 3/4 cps, it is found that
for every order of magnitude the frequency uncertainty is reduced, the
uncertainty in the estimate of the in-plane components is also reduced
by about an order of magnitude. If more stable on board frequency
standards become available in the future, then it would seem plausible
to reduce the estimate uncertainty by appreciably more than 800/0.
However, for the transmitter now planned for use aboard the first
Sunblazer probe, I feel that it is reasonable to assume that the incoming
signal can be filtered sufficiently well to reduce the residual frequency
uncertainty to the vicinity of 3/4 cps. (This filtering is distinct from the
filtering of measurements with Wr(: to obtain the state deviation estimate,
and is described in the next section.) To filter the incoming signal
more in order to reduce the residual frequency uncertainty to a lower
level may be somewhat unrealistic because of a lack of a truly deter-
ministic function for the time dependent mean frequency, f(t). In the
present context, it is assumed that if f(t) is not known, it can be esti-
mated well enough that the uncertainty in f(t) is small compared to
3/4cps, so that for practical purposes, the estimate of f(t) may be
considered deterministic. Suggestions for estimating f(t) are made in
a later section,

5.3 Reduction of Residual Frequency Uncertainty

As stated previously, the transmitter can be characterized a having
short-term frequency variations that are normally distributed about a
known (or well estimated), time dependent mean frequency. The stand-
ard deviation of this distribution is 7.5 cps. The transmitter broad-
casts for 100 msec once every 10 sec. The frequency that arrives at
the receiving station will be the actual transmitted frequency reduced
(or increased) by an amount that depends upon the actual range-rate
and by a relativistic frequency shift. It is obvious that to reduce the
residual frequency uncertainty to 3/4 cps, it will be necessary to
correct the received data for this relativistic effect, as it constitutes
a bias which is too big to be neglected. However, the compensation of

this bias presents no real problem. The relativistic effect is small,
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and based upon a present estimate of probe velocity it can be removed
accurately enough that the error made in compensating it will be many
orders of magnitude lower than the effect itself. Since the relativistic
frequency shift is on the order of 1 cps, any error made in compensa-
tion due to an error in estimated probe velocity will be negligible.
Because this effect can be removed, essentially without error, the
remainder of this analysis assumes that this has been done during de-
tection of the received frequency.

Detection of the received frequency may introduce an error in the
measured doppler frequency shift. Additionally, other sources of fre-
quency shifts, such as ionospheric scattering, may introduce errors.
It is assumed here that if any of these other sources of frequency shift
introduce a biased shift, then that bias will be removed as well as pos-
sible. The remaining frequency uncertainties are then lumped into
what is assumed to be an unbiased, normal distribution, called the de-
tection error, d{t), which has an unknown standard deviation. The
analysis that follows will put a bound on that standard deviation. The
detection errors are also assumed to have a correlation time small
compared to 10 sec.

The doppler shift will be determined by comparing the detected
frequency with a reference frequency which is the expected trans-
mitter frequency, f(t). The errors at this point will be due to the de-
tection errors, d(t), and the transmitter variations, n(t). The problem
then becomes one of filtering this measured doppler shift in such a
way that the residual frequency uncertainty due to d(t) and n(t) is on
the order of 3/4 cps. The following solution is recommended.

The detected frequency shift is a random process which has
stationary statistics, but it involves a frequency shift due to range-
rate that is time varying. However, over short periods of time (an
hour), the range-rate varies so little that the process can be consid-
ered time invariant. Then, with the doppler shift samples we meas-
ure on the ground every 10 sec, it is possible to estimate the mean
doppler shift by taking an average of a finite number of individual dop-
pler shift samples, This average value is the number chosen for the
doppler shift and is itself a random variable with a normal distribu-
tion that can be calculated from the statistics of the measured doppler

shift samples,
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The receiving station normally can receive data for 2 to 3 hours
daily. It is suggested that samples of the doppler shift be taken every

10 sec for 67 min, for a total of 400 samples. The estimate of the

true doppler shift, MAf’ becomes
400
M. =1 Af (5.5)
Af 400 - i :

where Afi is a single sample. Note that M Af is an unbiased estimator,
so that the mean value of M Af is the true doppler shift, Aaf.
400
1

M =255 E af + o(td) + d(t) = Af (5.6)

i=1

As stated above, the standard deviation of M can be calculated

ae Owme
from the statistics of n(t) and d(t). The standard deviation of d(t) is
unknown. Furthermore, we have already specified the desired level of
residual frequency uncertainty as 3/4 cps. Having specified this, and
knowing the standard deviation of n{t), Cyn’ it is now possible to put a

bound on the standard deviation of d(t).

2 2

2 g,%t 04
Om= —200 — (5. 7a)
Gy =15 cps (5. 7b)

It is unlikely that the detection errors will have a standard devia-
tion approaching 15 cps for the following reasons. FreQuency shift due
to Brillouin scattering will not contribute an appreciable error because
prediction will be used to estimate probe state during that time period
when it could be a factor. Ionospheric frequency shift can be reduced
to the order of 10-17cps. Errors caused by the ground equipment used
to determine the doppler shift samples ought to be negligible because
this equipment is maintained in a laboratory environment where size
and weight are not a factor. Therefore, the frequency stability of
this equipment ought to be several orders of magnitude better than the
equipment in the spacecraft, and the frequency errors should be no
larger than a few parts in 10ll or 1012 (on the order of 0.001 cps or
smaller). Assuming detection errors are totally negligible, it is pos-
sible to say that the standard deviation of the measured Af will be

3/8 cps, which permits reduction in the estimation uncertainties to
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about 100/0 of the values calculated when only angular data is filtered.,
In the actual processing of data, it is probably more convenient
to determine doppler shift samples with a precision frequency stand-
ard as the reference to be compared with the detected frequency. This
frequency standard would be set at the initial frequency of the onboard
transmitter and left unchanged. The doppler shift samples would be
processed as above to obtain an uncompensated average shift, M'Af.
Relativistic effects, onboard transmitter drift, and biases, would be
calculated and stored in the dafa processing computer. They would be
used after calculation of M’Af to correct M' af to give M af- This
method of processing the data is shown in block diagram form in Fig-

ure 5.1,

5.4 Suggestions for the Determination of f(t)

The analysis presented above assumes that the time dependent
mean frequency of the transmitter, f(t), is either deterministic or
can be well estimated. It is highly unlikely that f(t) will be a deter-
ministic function of time. Some suggestions are offered here for
estimating it.

The analysis here assumed measurements were made at 30
points during the mission between injection and conjunction. In fact,
data will be available for state estimation daily for about 350 days
prior to conjunction, and for a considerable time after conjunction.
The following method is proposed as a possible way of determining f(t).
At time t=0 (injection), the transmitted frequency should be very close
to the nominal value of 75Mc/sec. Measurements should be made and

used with the filter W:: to make a state estimate.

X Txy, t §x (5.8)

where AN, is the nominal state at time t Until the next time a state
estimation (through filtering) is desired, the initial estimate should be
updated daily with the state transition matrix and an estimate of range-
rate should be made based upon X, This figure should then be com-

pared to the apparent range-rate based upon M Af and £(t) = 75Mc/sec.
This will produce an apparent error in the range-rate. If it is then

assumed that, for the period between filtered state estimates,
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f(t) = (l+at)x75Mc/sec (5.9)

a value of ""a'" can be selected that will minimize the mean squared
error in apparent range-rate. For the next interval between filtered
state estimates, f(t) is assumed to be given by equation 5.9. Again,
there will be apparent range-rate errors, so that a new estimate of "a"
will be made. This process would be continued for the entire mission
until prediction begins (t = 0.96 yr), and would be resumed again after
prediction ends (t = 1,04 yr). This approach is offered as a solution
that might estimate f(t) well enough. How well this method will esti-
mate long-term drift was not investigated.

An alternate approach, and probably a superior one, is to hypo-

thesize a model for the transmitter. A possibility is
f(t)=fN(1+at) (5.10)

where fN is 75Mc/sec, and "a" is the oscillator drift rate. The problem
now would be reformulated and '"a'" would be added to the state deviation
vector and this parameter would be estimated along with the position

and velocity deviations, This would require derivation of a new meas-
urement vector for range-rate and would result in a different optimum
filter. Measurements could then be made daily for the purpose of state
estimation.

These methods were not analyzed in depth and are suggested as
possible areas in which this analysis could be extended. A final pos-
sibility is that frequency standards of better quality may become avail-
able for this type of application. For example, a Rubidium gas cell
controlled oscillator with a short term stability of 1 part per 10" and
a long term drift of less than 3 parts per 10" per month is commer-
cially available. The device weighs 24 pounds and has a frequency of
about 6800 Mc/sec. (Reference 13) This frequency could be counted
down to a level useful for the Sunblazer experiment, probably without
seriously affecting the long and short term stability of the overall
system. If this frequency standard were somewhat lighter or if some
future mission uses a larger probe, then this type of device would pro-
bably permit transmitter drift to be totally neglected without effecting
our ability to reduce the residual frequency uncertainties to 3/4 cps.

However, with a standard this good, it would seem more beneficial to
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estimate the drift and to filter out the short term wvariations, as this
would decrease the uncertainties in the estimated state by 1 or 2 orders
of magnitude,

5.5 Modifications for a Real Mission

As mentioned previously, several simplifying assumptions were
made that prevent this analysis from being directly applicable to a
real mission. The modifications required to use the data processing
procedures set forth here are given in this section.

The analysis must be formulated for a receiving station on the
earth's surface. It is possible to transform the azimuth and elevation
angles to the center of the earth. The same is not true for range-rate
data because there is no measurement of the probe velocity component
in the plane perpendicular to the probe-ground station line. I believe,
however, that it may be possible to achieve a very good, approximate
transformation using measured range-rate and an estimate based on the
present estimated state, of the velocity in the plane perpendicular to the
probe-ground station line. 1 feel this possibility ought to be investigated,
as this may result in a more manageable mathematical description than
found by formulating the analysis in ground station coordinates.

The effects of the rotation of the earth about the earth-moon bary-
center must be taken into consideration. Also, the ellipticity of the
orbit of the barycenter must be accounted for,

The effect on the probe of gravitating bodies other than the sun
will probably produce a trajectory that differs from the assumed nom-
inal ellipse by enough to cause large state deviations. If these devia-
tions become too large, then the assumption that measurement devia-
tions are linearly related to state deviations (equation 3.5) will not be
true. There are two possible solutions to this difficulty. The first is
to rectify the nominal ellipse (described below) to an ellipse that more
closely approximates the actual trajectory. The other solution is to
integrate the many-body equations of motion to get a more accurate
(and non-conic) nominal trajectory. This approach also requires that
the state transition matrix be calculated by numerical integration.

5.6 The Transponder and Rectification of the Nominal Orbit

As mentioned previously, the probe contains a beacon-transponder
that will operate for about a week. This device permits determination

of range and range-rate data as well as the azimuth and elevation angles.
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Consequently, there is no real need to extrapolate burnout errors to
injection to get the error covariance matrix at that point. Likewise,
there is no need to assume that the nominal trajectory is the one we
really desired (2/3 yr period and in the ecliptic). I suggest that a
filter be developed that estimates the state deviation vector from the
time of burnout to injection. At injection, this estimate, g_}'_‘c_l, is used
to define a new nominal trajectory on which the estimated state devia-
tion is zero. Furthermore, by filtering = between burnout and injec-
tion, the error covariance matrix can be determined recursively from
burnout, and will be available at injection for use in the filtering pro-
cedure developed in this analysis,

The concept of defining a new nominal by finding the trajectory
that makes the estimate of the state deviation zero is known as recti-
fication. The use of rectification is not limited to injection. Any time
the state deviation vector gets large enough to endanger the validity of
the assumption (equation 3.5) that the measurement deviations are lin-
early related to state deviations, then the nominal orbit ought to be
rectified. This causes the state deviation vector to be zero. The pro-
cess leaves the error covariance matrix unchanged, with the exception
that it may need to be rotated into a more convenient coordinate system.
It also requires that new relations be used for evaluating the measure-
ment vectors along the nominal. The question of how large state devia-
tions may grow before equation 3.5 loses its validity is left unanswered
and is suggested as an area in which this study might be extended.

5.7 Prediction and Smoothing

The primary Sunblazer experiment will take place during a time
period of about 2 weeks on both sides of conjunction. During this 4
week interval, received data will be corrupted with errors which are
poorly known. Consequently, it has been suggested that probe state
be estimated by prediction rather than filtering during this period. If
the filtered estimate of the state deviation vector made at the last meas-
urement time before conjunction (t = 0,96 yr) is ggF’ then the pre-

dicted state deviation is
A A
gft = -g't,F ng (5.11)

where t is any time during the 4 weeks around conjunction.
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After the experiment has been performed (t> 1.04 yr), data will
again be available for estimating the state deviation through filtering.
This means that data will be available on both sides of the conjunction
interval, and interpolation can be used to achieve a better estimate of
the state deviation during the time of the experiment than the estimate
available through prediction alone. This process, known as smoothing,
is not investigated in this study. I suggest that the application of
smoothing to the probe considered here might be a useful extension of

this analysis.
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APPENDIX A

THE COMPUTER PROGRAM

A.l Description

The program consists of a main program and 14 subroutines,
and is written in Fortran IV for use on an IBM System 360.

The main program is used for input/output and calls the sub-
routines that actually calculate the error covariance matrix at con-
junction through use of equation 4.19, The inputs for the main pro-
gram are the measurement times, ST (I); the measurement variances,
SS(J); and the six non-zero diagonal elements of the initial error co-
variance matrix, EO(K,K). It calculates the sun's gravitational con-
stant, U; the semi-major axis of the nominal trajectory, AM; the
eccentricity of the nominal trajectory, E; and the mean angular motion
AVN. The main program specifies the eccentric anomaly of the initial
point on the trajectory, Al. The eccentric anomaly of the final point,
EAP, is zero unless otherwise specified. (Here it is not specified,
since conjunction occurs at perihelion.) The program then calls
SUBROUTINE XTRP. XTRP extrapolates the initial covariance matrix
to conjunction and inverts it. The program calls SUBROUTINE PERI,
which adds in the effect of the measurements.

PERI is basically a loop that operates 30 times, once for each
measurement time, PERI's first action it to call CCOM, which calls
TRUE. TRUE has inputs of the eccentricity, E, and mean anomaly,

A, and solves Kepler's problem for the eccentric anomaly, which is
placed in common storage. CCOM also makes available the state
transition matrix. PERI then calls VCTR three times. Each time it
is called, VCTR calculates the 6 components of one of the measure-
ment vectors and returns the result to PERI. PERI then incorporates

the corresponding contribution of that measurement (a 6 X 6 matrix),
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extrapolates it to conjunction, and uses SUM to add it to the 6 X6 matrix
of previous results and calls the result EPI. After all 90 measurements
have been incorporated, PERI calls NVRT. NVRT inverts the 6X6
matrix EPI to give the error covariance matrix at conjunction, EP,
This is returned to the main program, where it is printed. The main
program then reads any new measurement variances and operates
again, until no more data is supplied. It is also possible, by spec-
ifying N=2 in the main program, to avoid the use of range-rate data
completely.

Subroutines MTRM, MTRN, MTRS, and MTRT are used to cal-
culate the elements of the state transition matrix, MPYI multiplies
a vector times its transpose. This is needed because of the manner
in which the program includes the contribution of the measurements,
Note that

k kT aal T

H;f A;I H = to—— (A.1)
a? .Yz

e
|o

=

The program calculates the contribution of one measurement at a time,
and MPY1 calculates, for example, the 6 X6 matrix k ET The divi-
sion of k ET by the measurement variance, o = SS(1), occurs in
PERI. MPY2 and MPY3 give the products of matrices. Some of the
programs operate in double precision. This is clearly indicated in
the listing that follows by a DOUBLE PRECISION card.

Of the subroutines described above, VCTR was written entirely,
and PERI was written in part, by the author. The main program was
also written by the author. All other subroutines are modifications
of the program described in Reference 6; both the original program
and the modified subroutines are due to Mr. John Fagan. (See Ref-

erence 6)

A.2 Program Listing

The program listing is included in this section as a matter of

record and begins on the next page.
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/J0R GO FAGAN
COMMON EX(636)355(3)eST(3U)sEsAVNIEAPsFosPIsUs AM
DIMENSICON CI(636)9CIT(646)+EPI(636)sHIE) sHH(E46) 95(596),
1R(6e6) e TM({393) s TN(393)1aTS(393)aTT(242)4EP(696)sF0(546)
?eAA(646) i
94 FORMAT (3E3041U)
93 FORMAT (6F18.9)
L4 FORMAT Y//7/7%
91 FORMAT (6F6e3)
92 FORMAT (3E15.10)
RFEFAD (5+91) (ST(I)s I=1,301)
RFEFAD (5492) (FO(KsK)s K=7486)
JRITE (6491) (ST(I)s I=1430)
WRITE Y6e44%
N=73
54 CONTINUE
READ (5492) (55(J)s J=143)
Pl=34141593
UZG6394 7% (346%#2e4%346525)%3#2/(9¢29%5,28) %#%3
AM=(4./QQ)**(1-/30)
F_=1./AM“1.
AVN=3 4 %P
Al=-P1 °
WRITE (6+493) PIsUsAMeFAVNL AL
WRITE )16s44%
WRITE (6+94) (SS({J)s J=1s3)
WRITE 16+44%
WRITE (6993) (EO(KsK)s K=146)
WRITE )Y6s44%
53 CALL TRUE (E.ATl+F4EACH
CALL XTRP (EOsEAQ)
CALL NVRT )YAASF X*
WRITE (6+93) ((AA(IsJ)s I=196)9J=146)
WRITE )6s44%
CALL PERI (NsEP)
WRITE (6+493) ({(EP(KsL)s K=196)s L=146}
WRITE 16s44%
IF (N-2) 51451452
51 N=3
52 CONTINUE
GO TO 54
END
/FTC DECK
SUBROUTINE VCTR (KsIsH)
COMMON EX(696)955(3)sST{(30)sEsAVNIEAPSFsPIsl1eAM
DIMENSION HI(6) I
T=5T(K)
IF (I-1) 54645
6 CONTINUE
R=AM% (1 eC—-E*%#2) /(10+E#COS(F))
V=SQRT(U*(2e0/R=~140/AM))
ROSO=R#%#2+1eN4+2« CARMCOS(F =24 UXP]%T)
RO=SQRT(ROSQ)
COSA={1e0+ROSQ-R¥%2) /(24 O%R0D)
A=ATAN(SQRT(10/7COSA%%2-140))



—

[P\

1n

51

IF (SIN(F+2e0#PI-2,0#P%T)) 19ls2
A==A

CONTINUE
SINSI=Z(1e0+EX#COS(F))/SART(1euU+2N#E*#COS(F I +F#%2)
COSSI=SQRT(1e~SINSI*%2)
ST=ATAN(SINSI/COSST)

IF (PI-F) EXY XX

S1=PI-S51

CONTINUE

ALAMDA=PI/2e +F+5]

SRP=COS{ALAMDA=2 4N%PxT)
FRA=(-1aN)*SIN(ALAMDA=2 4NRPIH#T)
FRZ=0N40
EVELP=2enN#PI#SIN{ALAMDA=D 4 O¥PI*T)
FVELA=2eI%PIXCOS{ALAMDA~2O%PI %T)
FVELZ =00

RP=R#SIN(SI)

RQ=R#COS(SI

RZ=060

VPz=NeN

VA=V

VZ=0DaC

ROP=RP-ERP

ROQ=RQ-ERQ

ROZ=0e

RODTP=VP~-EVELP

RODTQ=VQ-EVELQ

RODTZ=0e0

PHI=ALAMDA<=2,0#P1*T

CONTINUE

IF {(1-2) 74849
H(1i=1euU/RO¥SIN(A-PHI)
H{Z2)=2eU/RO*¥COS(A-PHI)

H{3)=0eU

H{4)1=0,40

H(5)=060

H{6)=0Ds0

GO T0 10

CONTINUE

H{1)=0euU

H(2)=0e0U

H(3)=1,0/R0

H{4)=0460

H{5)=040

H{(6)=0e0

GO 70O 10
RODTR=RODTP*ROP+RODTO#*RON+RCOTZ*#RO7
H{1)=1e/RO¥%3% (ROSOQ#*RODTF-RUDTR*ROP )
H(2)=1au/RO*¥#3% (ROSQ*RODTLU-RDDTR*¥KCG)
H{3)=14u/RO¥%3% (ROSC*RODTZ-RDDTR*¥R0OZ)
H{4)=ROP/RO

H{5)=ROQ/RO

H{6)=R0OZ/R0O

RETURN
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END

DECK
SUBROUTINE PERI(NLEP)
COMMON EX(636) 9SS5(3)sST(30)sEsAUNIEAPsFsPI 4114 AM
DIMENSION CI(6+6)sCIT(646)sFEPI(696)sH(6) sHH{E2E) 93S5(H96)
1R{696)9TMI333) s TN(393)9TS(393)eTT(393)4EP(646)3FE0(64+6)
DOUBRLE PRECISION AA(64+6)

DO 3 I=1s3v

FORMAT )/
WRITE 16434%
M1=0

CALL CCOM (I oCToCITeTMsTNSTSSTT)
DO 3 J=1sN
CALL VCTR (lsJeH)
FORMAT (6F1849)
FCRMAT (2F30e615)
WRITE (63s51) STU1)F
WRITE (6493) (HJJ) JJ=1,6)
CALL MPY1 (HHeH)
CALL MPY2(BsHHLCI)
CALL "MPYR (S+CITHR)
DO 3 K=146
DO 3 L=Ksb
S{KelL)I=S(KsL}) /550
AA(KesL)I=S{KsL)+AA (KoL)
IF (K~=L) 24342
AA(L+sK)I=AA(KsL)
CONT INUFE
CALL SUM (EPI.EXsAA)
CALL NVRT (EPLEPI)
DO 4 K=1le6
DO 4 L=1s6
AA{R oL )=0a 0
RETURN
END
NECK
SURROUTINE TRUE{ECCsEMASTALE)

COMPUTE THE TRUE ANOMALY FOR ELLIPTIC OF HYPERBOLIC ORBIT

GIVEN THE MEAN ANOMALY AND FECCENTRICITY
TOL= 1eUE-U6

CONV= 57429577957
IF(ABS(EMA)Y-TOL)B0O990,9U

E=0e

TA=0,

GO TO 18

IF(FCC-4n11)120430430

ROOT=1.

GO TO 40

ROOT= SQRT ( ABS { (le+ ECC)/(1le.- ECC) ) )
E=EMA

DO 10 1=1,10

DE=(FMA—(E-ECC*SIN (E)))/(1—ECC*®COS (E))
F= F4NDF

IF( ARS (DE/E)= TOL) 1541541V



10
15
18

/FTC

/FTC

53

CONTINUE
TA=2+ *ATAN(ROOT*SINI(E/2e¢)/COS(E/26))
RETURN
END

DEFCK
SUBROUTINE CCOM (MeCIloCITsTMeTNeTS,TT)
COMMON EX(696)955(3)sSTI30)sEsAVNIEAPSFsPIslJe AM
L=0 FOR CLUSTERS L=1 FOR SAMPLES M 18 THF OPEN LOOP INDEX
DIMENSION CI(6+6) sCIT(696)3TM({393)9TN(393)4TS(2e3)sTT(343)
IF (M) 24241
A==PI+AVN*®*ST (M)
CALL TRUE (EsAsFsFAC)
CALL MTRM(TMyELEAC,FAPsAVN)
CALL MTRN({TNsESEACIEAPSAVN)
CALL MTRSI(TSsESEACSEAPsAVN)
CALL MTRT(TTsE+EACEAPsAVN)
DO 5 I=1,3
DO 5 JU=1+3
CI{IsN=TT(Js1)
CI{Ted+3)==TN(Js 1)
CI{I+3:U)==TS(Js 1)
Cl(1434J+3)=TM(Js1)
CITiIsJ)=TT(IsJ)
CIT(IsJ+3)==TS(IsJ)
CITUI4+35sJ)==TN(I+J)
CIT(I+34J43)=TM(1,sJ)
RETURN
END

DECK
SUBROUTINE MTRM(C,ECCsEACsFADsANVEL)
DIMENSION C(3+3)

E=ECC

X=EAC

Y=EAD

Z=(Y-X)/2.4

U= (Y+X) /2.

T=(3.%Z-ECC*SIN (Z)#COS (U))*(COS (2)+ECC*COS (U ) )-4%SIN (2)
B=ANVEL

SNX=SIN (X)

SNY=SIN (Y)

SNZ=SIN (2)

SNU=SIN (U)

CSX=C0S (X)

CSY=COS (Y)

€52=C0S (Z)

CSU=COS (U)

ALPHA=SQRT (1.0-E##2)

BETA=1,0-E*CSY

DELTA=1e0-E*#CSX

PHI=140+E*CSX

TZ1=1.0+E%CSY ,

GAMMA=  SQRT ((le=-E##28CSX##2)% (1o=-Ex#2xCSYRR2))
Clls1)=( (PHI®#BETA+( (2. #SNZ#BETA) /DELTA*#2) % ( (1. —E**2)
1#SNZ-DELTA*®E*SNX#CSZ) ) ) /GAMMA
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Clls2)=( (( 2« #ALPHAXBETA) /DELTA®*2 ) XSNZ¥ (CSZ-E#CSU) ) /GAMMA
C(1+43)=040
Ct2s1)=010( 2e¥ALPHA) /DELTA®%2) % ({=TZ 1) % (3. %¥Z2-F*SN7Z%#CSU)+2.
1#GNZ*# (E®CSUHCSZH (1 O+EXRCSX-E*¥ X2 C QX ¥%2) ) 1) fGAMMA
Cl2+2)= ((DELTAX¥TZI+(27/DELTA%#2 )% { (~-TZ1)*E*SNX* (342 L #M7
1#CSUI+2e0%SNZH (24 O%EXCNU-( 14 U+EX*%2)%SNZ) ) ) ) /GAMMA
C(2+3)=0.0
C(391)=0.0
C{3+421=0.0
C{343)=1e=((2s%SNZ%%2) /DELTA)
RETURN
END
DECK

SUBROUTINE MTRN(FSECCsEACIEADSANVEL)

DIMENSION F(343)

E=ECC

BETA=2+/ANVEL

X=FAC

Y=EAD

2=(Y-X)/2

U=(Y+X)/2e

T=(3,#Z2<-ECCH*SIN (Z)*COS (UN)*(COS (ZV+ECCHCOS (U ) )-4+%SIN (7))
SNX=SIN (X}

SNY=SIN (Y}

SNZ=SIN (2Z)

SNU=SIN (U)

CSX=C0S (X)

Csy=C0S (Y)

CSZ=C0s (Z)

CsSy=Cos (W

ALPHA=SQRT (1.0-E*%2)

GAMMA=BETA/(SQRT (1e—=E##2#CSX#%¥2)1%¥SORT (] e—~E*¥%2%(S5YH%2))
PHI=1.0-E*CSX

T21=1.0-E*CSY

Flls1)=GAMMAXPHI®TZIXSNZ*{CSZ+E*CSU)
FU1e2)1=GAMMAX? JO%A PHAXTZ I %SNZ %%

F(1+3)=0a0

F(291)=={GAMMAX2  XALPHAXPHI%#SNZ*%x2)

F(292)Y=GAMMA® (4 ¢ #SNZ®(CSZ+E¥CSU)~(1e+E*¥CEX)* {1 o +E*¥CSY ) H (3472~

1E*SNZ*CSU) )

F(2+3)=0.0
F(3+1)=040
F{3,2)=0.,0
F{3:3)=BETAXSNZ*(CSZ~-E%CSU)
RETURN
END
DECK
SUBROUTINE MTRS(SsECCIEACSEADSANVEL)
DIMENSION S(3,3)
E=ECC
X=EAC
Y=FAD
2=(Y-X)/2
U=(Y+X)Y/2e
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T=(34%2-ECC*SIN (Z)*COS (U))*(COS (Z)+ECC*COS (U ))=bo%SIN (2)
SNX=CIN (X)

P=ANVEL

SNY=SIN (Y)

eMzZ=SIN (Z)

SMU=SIN (U)

CSX=COS8 (X)

CSU=CO0S (U)

€S2=C0% (2)

CsY=COS (Y)

RFTA=140-F%#CSX

ALPHA=1oO=F %2

DFLTA=1.0=-F#CSY

GAMMA= (2,0%R) /(RETAX¥2¥DFLTA¥% 2% GQRT (1eO-F#¥2¥CSX%¥%2 ) ¥SORT (]1e0-C
1#¥DHCSY#%2 1))
S(191)=GAMMAX(ALPHA* (340%2 24 OXF®SNZ#CSU )~ (RETAXDELTAXE X2 2SN X%
ISNY+ALPHA® (14 +BETARE®#CSX+E#CSY®OELTA) ) XSNZ#CS2Z)
S(192)=GAMMAXSORT (ALPHA)# (3o OXERGNX* (7 —E #QNZ*C 1)) +QNZ % %2% (ALPHA+L
1#CSY*DELTAY—F* % 2%XGNZ*SNU* (2 U *RETAXCSZ¥CSU+CSY*DELTA))
S(1s2)=0e0

S(2s1)=CAMMARXSORT (ALPHA)Y® (3¢ J¥FXSNY ¥ (Z-E*¥SNZ¥CSU)-SN7#%2%( AL PHA
1+E#% CSX*¥BETA)-FE#%#D2®SNZHSNUK {26 OXNDFLTAXCSZ*¥CSU+CSX#HSETAY )
S(202)=GAMMAX (EX*¥D ¥ SNX®SNY*( 34 O#2—4 OXEXSNZ#CGUHER*2%CN7 %CSZ % ( CSU*
IH#2-GNU%#2) )~ AL PHA%SNZ®¥(CSZ*¥(1e O+E* %2 ) =24 OXF%CSU) )

CS{2e¢3)=UeN

S{3,1)1=0e0

S(342)=Uell

C(293)=m (Do %PR{ (SN7¥CS7)/(RETAXDELTA) ) )

RETURN

END

DECK

SUPROUTINF MTRT(TSECCsEACSFADSANVEL )

DIMENSION T(3,3)

F=FCC

X=FAC

Y=FAD

2=(Y=-X)/2e

U= (Y+X)/2e

B=ANVEL

SNX=SIN (X)

SNY=SIN (Y)

SNZ=SIN (7)

SNU=SIN ()

CSX=C0S (X)

C8Y=COS (Y)

Cs2=C0S (2)

CSU=C0Ss (U)

ALPHA=1 O—E#%2

RETA=140~E*CSX

DELTA=10-E*CSY

PHI=1sN+F%CSX

TZT1=14N+F%CSY

GAMMA= SORT ((1e=FEX%2%CSX®%2 )% (1e—Ex®2xCSY%%D))

T(1s1)= ((TZI*BETA+( (2. #SNZ*BETA) /DELTA®%2) # (ALPHA#SNZ+DELTA
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IXEXSNY®CSZ) ) ) /GAMMA

T(le2)=0(( 2e%#SQRT (ALPHA)} ) /DELTAX¥X2 ) ¥ (PHI* (34%*Z-F*SNZ*(CS11)
1=2 NAGNZE(EXCSU+CSZH#(TZ I -C#22%CSY®%2) ) ) ) /GAMMA

T(1,2)1=04e0

T(241)=—-1({ {((2e%SORT (ALPHA)®BETA)/DFLTA%®%2)%¥SNZ R (CS7-F*C 51y
11)))/7GAMMA

T(252)=( (DELTA®PHI+ (2 ,C/DELTARR2 )% (PHIXE*SNY* (34 0%#2~F%#5N7
1#CSU)—2e0#SNZ* (24 CREXSNUHSNZ ¥ (L e O+E*%2) ) ) ) ) /GAMMA

T(2s3)1=0e0

T(3,11=040

T(3+21=0.0
T(363)=1a=((Pe®SN7¥%2 )} /DFLTA)
RETHIRM
END

NECK.
SUBROUTINFE XTRP (EQLEAC)
XTRP EXTRAPOLATES INITIAL CCVARIANCE MATRIX{EOD) FROM INITIAL
POINT(EAC/HAC) TO PERI=POINT
COMMON EX(696)9SS(3)9ST(3 ) sEsAVNIFEAPSF 4P I 4t)sAM
DIMFMSION EOQ(646) sFOT(606)4CI{646)3CIT(H06)sA(Ha6)eTM(343)4TN({3,43)
s TS(343)4TT(3473)
CALL MTRM(TIMeE sEACsFAPSAVN)
CALL MTRN(TNsESFACFEAPSAVN)
CALL MTREUTSSELFEACFAPsAVN)
CALL MTRT(TTaE+EACIEAPAVN)
CALL CCOM (D9CIoCITeTMeTN,TSHTT)
CALL NVRTU(EDILFO)
CALL MPYZ2(ASFOT,L,CT)
CALL MPY3(EXsCITsA)
RETURN
END

NDECK
SUHBROUTINE NVRT{QQO.Q2Q)
INVERSION OF 6X6 MATRIX
DOURLE PRECISION N{(6912)e5sDIV
NDIMENSTOMN QQ(6458)3000(646)
DO 1N 1=146s1
DO & J=1+6s1
N(LsI)=00Q(T4))
QUT ¢ J+6)1=06 2000000V
QUIsI46)=1710000000
DO 30 I=146s1
DO 14 J=146s1
IF(DABS({Q(Is1))=DABSIQ(Js1)))11s14,14
DO 12 K=146s1
S=Q(JeK)
QlJeK)=Q(]4XK)
Q(IsK)=S
S=Q(JeK+6)
QUJsK+6)1=Q{ I sK+6)
Q(lek+6)=5
CONTINUE
DIV=Q(Is1)
DO 15 J=1l46s1

—



15
20
25
30
35
/FTC
C
1
2
3
/FTC
C
2
1
3
/FT1C
C

57

Q{les0)¥=Q(IsJ)/DIV
QUIeJ+6)=Q(1+J46)/DIV
DO 3N J=1s641
IF (1-J) 20430,20
DIV=Q(JsI)
DO 25 K=le6s1
QUJeK)I=Q(JsKI=Q( I 4K)*DIV
QUJsK+61=Q(J9K+6)1=Q(I+K+6)%DIV
CONTINUE
DO 35 I=14641
DO 35 U=1e691
QQ(I1+J)Y=Q( 1sJ+6)
RETURN
END
DECK
SUBROUTINE MPY1(HHeH)
INDEXED VECTOR TIMES ITS TRANSPOSE
DOUBLE PRECISION A(6)
DIMENSION H{6)sHH(696)
DO 1 I=1+6
A(Ty=H(I)
DO 3 I=1+6
DO 3 UJ=1]+6
HHYT g J%=A) I %%A) U
IF)YI-U%2+3,2
HH)YJ o T %=HH) ] 4 U*
CONTINUE
RETURN
END
DECK
SUBROUTINE MPY2(XXeXYsXZ)
XY TIMES XZ
DOURBLE PRECISION A)6:6%43B)6:36%4,CIE46%
DIMENSION XX(696)sXY(696)9sX2(646)
DO 2 J=1+6
DO 2 K=1ls6
AYJeK¥=XY) JgKH*
BYlJeK¥=XZ)JeK*
DO 1 J=1+6
DO 1 K=146
C)J’K*=O.
DO 1 L=1+6
CrJeKE=C)JoK¥sA) Jg L #%B) L oK%
DO 3 J=146
DO 3 K=1l+6
XX Yo K%=C) JoK®
RETURN
END
DECK
SUBRQUTINE MPY3(XXsXYeX2Z)
XY TIMES XZs XX IS SYMMETRIC
DOUBLE PRECISION A)6s6%3R)16+:6%4C)1646%
DIMENSION XX(696) sXY(636)eXZ(646)
DO &4 J=1ls6



DO 4 K=1le6
A)YJoK¥=XY) JoK*
4 RYJSeK¥E=XZ) JeK*
DO 3 JU=1ls6s1
DO 3 K=Jsbsl
, CYJoK%®=0,
| DO 3 L=1e46s]1
‘ CIJaK¥=Cl s K¥gA) gL #%BYL oK%
IF (L=6) 341s1
IF (J=K) 24342
CIKeJx=C)JoeK*
COMNTINUE
DO & J=1.6
DD 5 K=146
5 XXy JeK%=C)JoK*
RETURN
END
/FTC DECK
SUBROUTINE SUMIZXeZY sCH
C ZY+22s ZX IS SYMMETRIC
DOURLF PRECISION A)6+6%4R)GK 6%, 1646
DIMENSION ZX)696%42Y)166%
. DO 3 I=1,6
DO 3 J=146
3 BYyledx=ZY) T e %
DO 2 J=1+6s1
DO 2 K=Jebsl
AYJoK%=R) JoK¥gCT) JoKH*
IF (J=K) 14291
AYK e R=A) JeK*
2 CONTINUE
DO 4 I=1,6
DO 4 J=1e6
4 ZIX)Y1eJdn=A)] s U*
RETURN
END

w N

—

/DATA
eN2000e05000610000618000,22000,280
e30000432000635000638000400004420
e 450NN 48000650000 5200045800N06600
eB20NND ,64N00TNONNLTENONLTBNNN L8800
eB2NNNGB85NNN¢BBNNNLONNNC F4N0N 496N
+e1NT7010NNNE=064e10T701000QCF=N64+e10TNT10NNOE-NB
+¢1533N0000E=024e290270000E=034153300000E-02
. +.BHQOOOOOOEfO5+.304000000E-05+.3990000005-02
+e304N000NDE=0546304000000E~056177400000E-02
+¢304NNNNNNE=N5443040000N0E=N5 ¢4 444N000000E-013
+ 6 3NGNNONDNE=0544304000000FE=N5 46 160000NONDF~-013
- +e3NLGNNANNNNAF=N8 44 304NNNNOANE=NS 4  4NONNNONNF =04
+e3N4NNNNANNE=D54430400N0NNNF=N5 4 4440N0N0NNOF =05
+e 304ONNNANNE=054+4304000NNNE~N8 4 ¢ 400NOONONE~NE
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+e3N40N0000NF =054 4304 00NNNNE=NS4+, 160N0NNONE=07
+e3040N00NNE=N34+43N400NN00FE =034 16UNNONDNDE~DT
+e ANGNNNNNNE <N54 4 INLENONNNNF =B 4 ,4NNNNNANNNAF-NR
+e INLGONANNNF <0544 304 N00NNNOF =064, 160NNNNNNE =09
+e3040NOOANNF=N5443N4NNINNN0E=NEL 40 NANNDNNDE=1N
/END OF FILE
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APPENDIX B

DERIVATIONS PERTAINING TO THE MEASUREMENT VECTORS

B.1 Justification of Equation 3.5

Any measurement quantity can be written as some scalar func-

tion of the probe state.
m = f(x) (B.1)

The exact functional form of f{x) depends upon the quantity measured.
However, at this point we are not interested in the particular func-
tional form, but rather, the same relationship does exist. At any
specified time, the relation can be written for the nominal state and
also for any other point in the state space. If the non-nominal point
is in the region of convergence of a Taylor Series, then equation B.1

can be expanded about the nominal state.
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Tl - +...(B,2a)
-zt @22

where the convention will be that

(B. 2b)

If the state deviation, (§-§N), is small, equation B. 2a can be line-
arized by truncating second and higher order terms. Then, by de-
fining

T 0f(x)

= X (B.3)
and substituting equations B.3, 3.1, and 3. 4 into the linearized form

of equation B. 2, the desired result is obtained.
Sm =ET(§_§ (B.4)
In practice, finding h by taking partial derivatives of f(x) may

be inconvenient, because f(_)f) may be difficult to determine.
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However, equation B.4 expresses the form of the desired result, and
the measurement vector, h, may be obtainable in some round-about
fashion that requires no knowledge of f(x).

B.2 Coordinate Systems

Three coordinate systems are useful in this problem.

a) Inertial, Sun-centered Coordinate System

This coordinate system is specified as the XYZ frame. The lx

vector lies in the ecliptic and points at aphelion of the probe's two
body ellipse about the sun. Injection into this ellipse is assumed to

occur at aphelion, at t=0, The —1Y vector lies in the ecliptic and points

in the direction of nominal probe velocity at aphelion. The 1Z vector

is defined by

=1 %
1z51x "1y (B. 5)

b) Earth-centered, Rotating Coordinate System

This coordinate system is specified as the xyz frame. The 1
vector points in the instantaneous direction of earth velocity and lies
in the ecliptic. The _1x vector lies in the ecliptic, perpendicular to
-ly’ and in general approximately along the sun-earth line. Specifically,
for this problem, the earth is assumed to be in circular orbit, so that

1 is exactly along with the sun-earth line. This as surni:tion is jus-

tified elsewhere (pg. /4). The 1, vector coincides with that of the
XYZ frame.
c) Flight Path Coordinate System

This coordinate system is specified as the pqu frame. The 1
vector points along the instantaneous probe velocity. The _1p vector
lies in the plane of probe motion, is perpendicular to -lq’ and points
outward from the center of attraction. The —lu direction is defined by

1,21 X_lq (B. 6)

This coordinate system is specialized by.selection of a nominal
trajectory. For this problem, the nominal trajectory will lie in the
ecliptic, and so will —1-p and -}q These coordinate systems are shown
for the general case in Figure B.1, and for the nominal trajectory used

in this analysis in Figure 3.1,

B.3 The Azimuth and Elevation Angle Measurement Vectors

The measurement vectors for angular measurements are more
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readily developed in the xyz frame. Consequently, they are derived in
that frame, and in section B. 4 are rotated in to the pqu frame.

From Figure B.l, we can write, in the xyz frame,

-cos L cos A
R=r+p=r+p| cosLsinA (B.7)

sin L

Taking the first-order variation of equation B. 7 with respect to azimuth

angle change gives

;B ) cos L sin A
gl}_= A-SA=—£—SA+p cos L cos A{dA (B. 8)

JA
0
However, the sun-earth radius vector, I, is a function of time only, so
that 9_1'_/3A is zero. Taking the dot product of equation B. 8 with 3p/JA

and simplifying gives the desired measurement vector. (Note the angle

measurements depend upon probe position only.)

§a=a"8x (B. 9a)

T_[ T . T]_ 1 [ . T
a” =|a;3 :23 * pTos L sin A,cos A0 { 03] (B.9b)

An identical procedure for the elevation angle gives

SL=pT8x (B. 10a)

T [, T. T _1[.. . LT
b -[23 : 23] =3 l}1nLcosA?-s1annnA, cos LL 23] (B.10b)

B.4 Rotation into Flight Path Coordinate System

Figure 3.2 shows the orientation of the three coordinate systems,
for the nominal trajectory in the ecliptic, at some arbitrary time.
The three frames are aligned at t = 0, which is injection at aphelion
into an heliocentric, elliptic orbit. The angle between 1, and _1P~is
A (t).

x() = ™2 + (1) F Vin (B. 11)
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The flight path angle, ¥, is given by equation 3.15 and £(t), the true
anomaly, is found as a solution to Kepler's problem. (See

The angle between 1 and 1 becomes

B(t) =\ (t)-2nt (B.12)

because the earth 1s in circular orbit.

Then, from Figure 3.2, we can find a rotation matrix, M, such that

—S—pqu - M§xyz (B.13)
where S is an arbitrary column vector and the subscript indicates the
frame in which S is written.

" cos g sing O“{
M= | -sinf cosf oi (B.14)
Lo o 1]

Using M to transform_a_ and E, we find

T T..T (B.15a)
53’E3M

T ,T.T
dy=b;M (B.15b)

The result of the indicated operation, with L.=0 for the nominal case, is

-k_T :;1 E;in(A-ﬂ) cos(A-@) 0 gg‘:i (B.16a)
_c_1_T=[o 0 ;_: 2;1‘] (B.16b)

B.5 The Range-Rate Measurement Vector

From Figure B.1l we can write

R=r+tp (B.17)

Differentiation of equation B.17 yields
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N=v+p (B.18)
Solving equation B.18 for range-rate yi€lds
3 = g.£ = V - L2 B.1
p=p-B=(V-v). 8 (B.19)
Then, for small deviations
& =2. 85 + 5 8(B (B. 20)
Using the facts that
2 _p-8p
p =p-p and Sp— o (B.21)
we can simplify equation B, 20 to get
§p =% Lop 4 [‘B'E)E '3(11'-@3:', $p (B.22)
P L

Because the earth's position and velocity are known quantities, they

are not subject to variation., Consequently,

§p = SR and §p = §V (B.23)

Substitution of equations B. 23 into equation B.22 gives the desired

result.
$6 = cl8x (B. 24a)

where
(p-ple-(p-Flp
p (B. 24b)

e

Notice that nowhere has a coordinate system been specified, so

lo
n

that equation B. 24a is valid as long as ET and 831_ are coordinatized

in the same system.
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APPENDIX C

CALCULATION OF VARIANCES AT THE SPHERE OF INFLUENCE

C.1 Variance in Position Components

As stated in Chapter 4, the LTV Astronautics Division conducted
an error analysis on the launch vehicle for Sunblazer probe. ( )
In this analysis, nineteen separate error sources were identified and
a Monte Carlo technique was used to extrapolate the errors to the
sphere of influence. It is found that errors at the sphere of influence
are normally distributed. In the analysis, the three sigma deviation
in themagnitude of aphelion radius is 0,0017 AU about the nominal
value of 1 AU, It is assumed here that the distributions of the de-
viations in all three components of aphelion radius are identical.
Then,

G-Rq = ¢Rp = O-R.u (C. 1)
2 3
Tr=303, (C.2)
1l
<J"Rp 3 R o (C.3)
But,
Op =232l =5.67x107% AU (C. 4a)
so that,
_ -4
Opp = 3:27 %1077 AU - (C. 4b)
and
2 2 2 -8 2
O—Rp = URq = O’Ru =10,.7x10 (AU) (C. 5)

Since injection occurs at aphelion, the variances in position compo-

nents are given by equation C, 5.
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C.2 Variances in Velocity Components (1, and 1. directions)

At nominal injection the probe velocity lies in the ecliptic and is
perpendicular to the sun-probe line. The magnitude of nominal ve-

locity can be obtained from

2 2 1
Ve i[5 4] (C.6)
VN = 81, 320 ft/sec (C.7)

The LTV error analysis gives the standard deviation of the inclination
angle as 0. 44°, Any velocity out of the plane of the ecliptic due to
non-zero inclination angle constitutes a velocity deviation in the 1
direction. Both velocity pointing errors and magnitude errors con-
tribute to velocity deviations in the_lu direction., However, the con-
tribution of the magnitude errors is small compared to the contri-
bution of the inclination errors. Consequently, the standard deviation

of the velocity errors out of the ecliptic plane is

Oyvu™Vn O (C.8)
Ty = 3.92 X 1072 AU/yr. = 609 ft/sec (C.9)

At nominal injection, the flight path angle is 90°, Consequently, any
non-zero velocity in the_lp direction at injection constitutes a deviation.
It is assurmed that the deviations in flight path angle are distributed in
a fashion identical to the inclination angle deviations. Again, magni-

tude deviations contribute no appreciable error. Therefore,

-2
= X
Ovp 3.92x107° AU/yr. (C.10)
2 2 _ 2 -4
Typ = Oy~ 15,33 (AU/yr)” %10 (C.11)

Equation C.1l gives the variances in velocity deviations in the_lp and
1 directions,
—u

C.3 Variance in Velocity (g direction)

Nominal burnout occurs at an altitude of 1, 05758 x 106 feet and a
velocity of 39,2881 x 103 ft/sec with respect to the earth. The probe
then coasts along a two-body (earth-probe) escape hyperbola to the
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sphere of influence., Using burnout conditions and

2 2.1
Vh Rl [;’ +-£bJ (C.12)

one can compute the nominal semi-major axis as 0,54 X 108 ft and the
nominal velocity at the sphere of influence of 16, 42 X 104 ft/sec with
respect to the earth. This velocity is oriented in the plane of the
ecliptic and perpendicular to the sun-probe line.

The standard deviation of burnout velocities is 110 ft/sec. Taking
the non-nominal burnout velocity as the nominal plus one standard de-
viation, and propogating this along an escape hyperbola (a2 =0, 52.3X108
ft) to the sphere of influence yields a velocity magnitude at injection of
16. 6»8334103 ft/sec. In this calculation, deviations in burnout altitude
were not considered.

Pointing errors do not appreciably change the velocity vector in
either magnitude or direction. Consequently, (16.683 - 16, 42)X103

ft/sec is taken as the standard deviation in the_lq direction.

0 §q = 2-9%107* (AU/yn)® (C.13)

Equation C.13 gives the variance in the third velocity component.
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APPENDIX D

DERIVATION OF THE MAXIMUM LIKELIHOOD FILTER

D.1 Useful Relationships

These relationships will be of use in the derivation that follows.

kT
—n
§m = [aT| §x =u &« (D.1)
—n -n —n n —n
T
c
—-n
Ni Al
ém = X (D. 2)
~n n —n
a
Sﬁn- Sm +[3J=ém T (D. 3)
Y
L ’ ~ 8 '
zc—n = %n, n-1 —)En-l - En +En (D. 4)
§% = $x +e (D. 5)
-1 -1
1
En = @n, n-lEn—l (D. 6)
D.2 The Optimum Filter
The recursive estimation procedure is formulated as
l\' ~s ~ !
Sﬁ = 8x + W [&m -ém] (D.7)
~n —n n “~—n —

Substitution of equations D.2 through D. 5 into D. 7 yields

Sx +te = gx +e'+W [ dm tp -H ((Sx +e')] (D. 8)
-n =n “n -n n —n n n. =n -—n
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This reduces to

Sa 7% P Wolpy - Hoel= 1 - W H leg + Wop (D.9)

. . T . .
From equation D.9 write ee™, the error covariance matrix.

T _ - (T y T T T
Enin T En = wan)EnEn (I-Wan) +Wn&ntnwn (D.10)

Note that the cross product terms (e. g., E;lkl,_:f) are zero because the
measurement errors att , p , are independent of the updated error

vector, e;l, and have zero mean value. Then,

E =(I-WH )E'(I-WE )L+ WA WL (D. 11)
n nn n nn nnn

Recalling that the trace of E is a quadratic function of e, we can write

e2 = tr [En] (D.12)

Then, a necessary condition for a minimum mean squared error, ez,
is that the first variation of equation D. 12 with respect to Wn be zero.
This will supply us with a relationship that the optimum filter must
satisfy. Furthermore, if this filter can be shown to meet sufficient
conditions, then it is an optimum filter and a maximum likelihood

filter, because it minimizes a quadratic function of e.

S oti-Swueg-wa)Tog-wu )euTswT
n naoan nnn nn nn n

+Sw oA wl+wa Swh (D.13)
nn n n o n
But
T
triB] = tr[B ] (D.14)
so that
$2 - arldwuea-wa)T-Swa whl=o (D.15)
n n nn nn nnn
_ , T T
0= tr{éwn[HnEn(l-wan) A ]} (D. 16)

If Wn is a true optimum filter, equation D.16 must be true for arbitrary

(small) éWn. This is guaranteed if

T Ty _
[HnELl(I- WH) - AW ]=0 (D.17)



72

Solving equation D, 17 for W:: yields a filter that meets necessary con-
ditions.

T

w°T - [H E'H
n n n n

+A 1" E (D.18)
n n o
To prove Wt? is sufficient for a minimum ez, in equation D. 1l substitute

Wo + SW for W .
n n n
E =(I-W°H - 8w H)E' (1-Ww°H -Sw 1 )T
n n n nn n n n nn

+(Wwo+ Swya (wo+e Sw)T (D.19)
n n n n n
Expanding and taking the trace yields
trlE )= erl{1-WPH )E' (1-W°H )T - (1-WPH )E'H Sw T
n n n n n n n n nn n
SSWHE(I-WeH )T + SwH E'HL SWT
n nn n n nn nnn n
+w weT ¢ Swa SwT
n nn nn n
oT o

+<SWAW + W
nnn n

trl(1-WOH )E'(1-WoH )T + woa w°T)
n"n Tn n ' n nnn

-2tr| Sw HE (I1-w°H )T - §w A w°)
nnn n n nnn

sl SwW HEH + 4 ] dwT)

n n nn n n

T

n

tr[E0] + trf éwn(HnE;lH +A) SWE]

2l W E - EHWeT A wT))
n nn nnnmn nn

T

n

H

trlE®] + trl Sw (HE'H +A )SWTJ
n n nn n n

T

n

2tr [ &w (HEH +A Wl _(u E'uT+a ywOT)
n n n n n n nn n n

tr[EnJ

tr[EzH- trl Swn(HnE;lH;erAn) Sw:] (D. 20)

Here, the quantity tr{Ezl is recognized as the result of inserting only
Wr? in to equation D,1l., Also, the second term can be rearranged.

T

n

2nd term = trl SWLSW (H E'H
n n nn

Both SWT SW and (H E! HT + A ) are positive definite, 3 X3 matrices,
n n n o n n

-l-An)J (D. 21)
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! so that their product is positive definite. A property of a positive def-
. inite matrix is that its trace is positive. Consequently, it is evident

from equation D, 20 that using any filter other than Wrcl) produces a

. mean squared error that is larger than that produced by the Wr(:. There-
fore, W:l) also satisfies a sufficient condition and the optimum filter is
O
| W,
l n o
| Substitution of Wn into equation D.1l yields a recursion formaula
; for E.
E_ =(1-W°H )E' (1-W°H )T + woa wOT
n n n n nn n nn
E =E' -WoH E' -E'H ' W°T+w°H E'H w°T +w°a woT
n n n nn nn n n nnn n n nn
-E' -E'H(HE'H +A ) 'H E'-E'H(H E'H +A )"'H E'
n nn nnan n nn nn nnn n nn
+woH E'HY +A ywOT
n nnn n n
- =B -2EH Wl uT(meal+a yim e ualia yweT
» n nnn n o n nn n n nn n n
. E =E' -EHW°T (D.22)
n n n n n

Then, the result of this derivation is a maximum likelihood filter which

is usable in the following recursive formulas,

8% = Sz +wlT (dm -m_&4&n (D.23)
—n - n -—n n -n
E ='-£E'Hw°T (D. 24)
n n n n n
weT g e u +a)la (D. 25)
n n nn n n n

D.3 Alternate Recursion Relation for Ep

Hypothesize that the following method of determining the error

covariance matrix at time ’cn is valid,

1

log-ly gt atly (D. 26)
n n n

E "=E
n n
Use the matrix identity (Ref, 3)

-1

-1
B
nm mm mn

(an-l-B )

=Fl_rls (¢ + F'm )yls r!
nn nn nm mim mn nn nm mn nn

(D.27)



74
where the subscripts define the dimensions of the matrices.

1

Define E' " =F (D. 28a)
n nn ,
T
Bnrn = Hn (D. 28b)
C = A (D. 28¢)
mm n

Substitution of definitions D. 28 into equation D. 27 gives

Errutalm)ytog e uTa +H B HY)'H B (D.29)
n n n n n n n n n nn n n
E =E'-E'HYA +H B'uY) g & (D. 30)
n n nn n nnn nn

Substitution of equation D. 25 into equation D. 24 yields

E_=E! - E;H:(An+ HnE:lH;f)'lHnE;1 (D. 31)
The recursion relation developed earlier with the filter gives a
result (D. 31) that is identical to the result obtained by taking the in-
verse of equation D, 26. Consequently, calculation of the error
covariance matrix using equation D. 26 is completely equivalent to

calculating it using equation D. 24.
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